
Workshop:
FOSS4G routing with pgRouting tools

and OpenStreetMap road data

2009/11/02 and 2009/11/07

FOSS4G routing with pgRouting tools and OpenStreetMap
road data
Presenter:

● Daniel Kastl

Further authors:

● Claude Philipona
● Frédéric Junod
● Anton Patrushev

Abstract

pgRouting adds routing functionality to PostGIS. This introductory workshop will show you how. It
gives a practical example of how to use pgRouting with OpenStreetMap road network data. It
explains the steps to prepare the network data, make routing queries, assign costs to the network
links and modify your results through wrapper functions.

Description

Navigation for road networks requires complex routing algorithms that support turn restrictions and
even time-dependent attributes. pgRouting is an extendible open-source library that provides a
variety of tools for shortest path search. The library in its current version is an extension of
PostgreSQL and PostGIS. It's predecessor "pgDijkstra" was written by Sylvain Pasche from
Camptocamp. It was then extended by Orkney (Japan) and renamed to pgRouting.

An introduction will give an overview of the project history, development team, infrastructure,
productive environments and scope of use. The workshop will explain about shortest path search
with pgRouting in real road networks and how the data structure is important to get faster routing
results. Also you will learn about difficulties and limitations of implementing pgRouting functionality
in GIS applications.

To give a practical example of how to perform shortest-path searches with pgRouting, the
workshop makes use of OpenStreetMap road network data. The OpenStreetMap community
creates their own road data that is freely available for a rapidly growing number of areas. We will
use OpenStreetMap data of Capetown for this workshop. You will learn how to convert the data
into the required format and how to calibrate the data with "cost" attributes. Furthermore we will
explain the difference of the three main routing algorithms "Dijkstra", "A-Star" and "Shooting-Star".

By the end of the workshop you will have a good understanding of how to use pgRouting and how
to get your network data prepared. While similar to the last years workshop "Web-based Routing:
An Introduction to pgRouting with OpenLayers", this year's pgRouting workshop will – in regard to
the students feedback – focus on pgRouting itself and network data issues. OpenLayers map client
will still be used to display the route on a map.

Due to time limitation installation of pgRouting is not part of this workshop. An installation with
pgRouting will be provided for you as well as the OpenStreetMap sample data for Capetown.

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 2/20

Arramagong Live DVD

Arramagong is a self-contained live DVD, based on Xubuntu 9.04, that allows you to try a wide
variety of open source geospatial software without installing anything. It provides effective tools for
a range of geospatial use cases.

Application passwords are in the passwords.txt file on the desktop.

Most of the Live DVD applications can be installed on Apple OSX and Microsoft Windows as well.
Arramagong comes with Macintosh Leopard/Snow Leopard and Windows XP/Vista installers for
these applications in the WindowsInstallers and MacInstallers folders of the DVD.

How to get started:

1. Insert DVD and reboot

2. Press enter to start up

3. At splash screen press Enter to login

4. Welcome to Live DVD

Optional:

● Change keyboard layout to Japanese 106-key
● Connect to network
● If username or password is required, use

username: user
password: user

Get the Source

● The workshop documentation can be also found here:

○ http://pgrouting.postlbs.org/wiki/WorkshopFOSS4G2008

○ http://pgrouting.postlbs.org/wiki/OSMTutorial

Further informations

● pgRouting project website: http://pgrouting.postlbs.org

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 3/20

http://pgrouting.postlbs.org/wiki/WorkshopFOSS4G2008
http://pgrouting.postlbs.org/
http://pgrouting.postlbs.org/wiki/OSMTutorial

About pgRouting
pgRouting is an extension of PostGIS and adds routing functionality to PostGIS/PostgreSQL.
pgRouting is a further development of pgDijkstra (by Camptocamp). It is currently developed and
maintained by Orkney, JAPAN.

pgRouting core functionality

● Shortest Path Dikstra: routing algorithm without heuristics
● Shortest Path A-Star: routing for large datasets (with heuristics)
● Shortest Path Shooting-Star: routing with turn restrictions (with heuristics)
● Traveling Salesperson Problem (TSP)
● Driving Distance calculation (Isolines)

Database routing approach

● Accessible by multiple clients through JDBC, ODBC, or directly using Pl/pgSQL. The clients
can either be PCs or mobile devices.

● Uses PostGIS for its geographic data format, which in turn uses OGC's data format Well
Konwn Text (WKT) and Well Known Binary (WKB). This allows usage of existing open data
converters.

● Open Source software like qGIS and uDig can modify the data/attributes,
● Data changes can be reflected instantaneously through the routing engine. There is no

need for precalculation.
● The "cost" parameter can be dynamically calculated through SQL and its value can come

from multiple fields or tables.

pgRouting project website: http://pgrouting.postlbs.org

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 4/20

http://pgrouting.postlbs.org/

About OpenStreetMap
"OpenStreetMap is a project aimed squarely at creating and providing free geographic data such
as street maps to anyone who wants them."

"The project was started because most maps you think of as free actually have legal or technical
restrictions on their use, holding back people from using them in creative, productive or
unexpected ways."

[Source: http://wiki.openstreetmap.org/index.php/Press]

OpenStreetMap uses a topological data structure:

● Nodes are points with a geographic position.

● Ways are lists of nodes, representing a polyline or polygon.

● Relations are groups of nodes, ways and other relations which can be assigned certain
properties.

● Tags can be applied to nodes, ways or relations and consist of name=value pairs.

 This is how nodes, ways and relations are described in the OpenStreetmap XML file:

<?xml version='1.0' encoding='UTF-8'?>
<osm version='0.5' generator='JOSM'>
 ...
 <node id='252791067' timestamp='2008-03-18T19:45:06+00:00' user='Russell
Cloran' visible='true' lat='-33.9291602' lon='18.4251865'>
 <tag k='created_by' v='JOSM' />
 </node>
 <node id='252791066' timestamp='2008-03-18T19:45:05+00:00' user='Russell
Cloran' visible='true' lat='-33.9305174' lon='18.4265772'>
 <tag k='created_by' v='JOSM' />
 </node>
 <node id='252791065' timestamp='2008-03-18T19:45:04+00:00' user='Russell
Cloran' visible='true' lat='-33.930418' lon='18.4231201'>
 <tag k='created_by' v='JOSM' />
 </node>
 ...
 <node id='260366643' timestamp='2008-04-28T10:59:11+01:00' user='Adrian
Frith' visible='true' lat='-33.9287313' lon='18.415251'>
 <tag k='created_by' v='JOSM' />
 <tag k='name' v='South African Museum' />
 <tag k='tourism' v='museum' />
 </node>
 ...
 <way id='26358722' timestamp='2008-08-17T15:41:55+01:00' user='Adrian Frith'
visible='true'>
 <nd ref='288787699' />
 <nd ref='288787695' />
 <tag k='highway' v='residential' />
 <tag k='name' v='Guinea Fowl Crescent' />
 </way>
 <way id='26358723' timestamp='2008-08-17T15:41:56+01:00' user='Adrian Frith'
visible='true'>
 <nd ref='288787696' />
 <nd ref='288787723' />
 <nd ref='288787724' />
 <nd ref='288787728' />
 <nd ref='288787725' />
 <nd ref='288787677' />

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 5/20

http://wiki.openstreetmap.org/index.php/Press

 <tag k='highway' v='residential' />
 <tag k='name' v='Old Farm Road' />
 </way>
 ...
 <relation id='27924' timestamp='2008-08-17T09:53:48+01:00' user='Adrian
Frith' visible='true'>
 <member type='way' ref='4994378' role='outer' />
 <member type='way' ref='5022484' role='innner' />
 <tag k='type' v='multipolygon' />
 </relation>
 <relation id='22713' timestamp='2008-07-27T22:49:25+01:00' user='Adrian
Frith' visible='true'>
 <member type='way' ref='25817796' role='outer' />
 <member type='way' ref='25817797' role='inner' />
 <tag k='type' v='multipolygon' />
 </relation>
 ...
</osm>

The OSM data can be downloaded from OpenStreetMap website using an API (see
http://wiki.openstreetmap.org/index.php/OSM_Protocol_Version_0.6), or with some other OSM
tools, for example JOSM editor.

Note: The API has a download size limitation, which can make it a bit inconvenient to download
extensive areas with many features.

When using the osm2pgrouting converter (see later), we take only nodes and ways of types and
classes specified in "mapconfig.xml" file to be converted to pgRouting table format:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <type name="highway" id="1">
 <class name="motorway" id="101" />
 <class name="motorway_link" id="102" />
 <class name="motorway_junction" id="103" />
 ...
 <class name="road" id="100" />
 </type>
 <type name="junction" id="4">
 <class name="roundabout" id="401" />
 </type>
</configuration>

Detailed description of all possible types and classes can be found here:
http://wiki.openstreetmap.org/index.php/Map_features

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 6/20

http://wiki.openstreetmap.org/index.php/Map_features
http://wiki.openstreetmap.org/index.php/OSM_Protocol_Version_0.6

Installation of pgRouting
(on Ubuntu 9.04 (with PostgreSQL 8.3) with TSP and Driving Distance (Extras))

To build pgRouting the following libraries are required:

● pgRouting source code (http://pgrouting.postlbs.org)
● C and C++ compilers
● PostgreSQL version >= 8.0
● PostGIS version >= 1.0
● The Boost Graph Library (BGL). Version >= 1.33 which contains the astar.hpp

(http://www.boost.org/libs/graph/doc/index.html)
● For TSP (optional): The Genetic Algorithm Utility Library (GAUL)

(http://gaul.sourceforge.net)
● For Driving Distance (optional): Computational Geometry Algorithms Library (CGAL)

version >= 3.2 (http://www.cgal.org)

For installation instructions on other platforms take a look at the pgRouting documentation pages:
http://pgrouting.postlbs.org/wiki/pgRoutingDocs#Installation

pgRouting on the Live DVD has been installed like this:

1. Install required packages

sudo apt-get install build-essential subversion cmake
sudo apt-get install libboost-graph*
sudo apt-get install postgresql-8.3-postgis postgresql-server-dev-8.3

For Driving Distance algorithm (optional)

CGAL library can be easily installed using the Ubuntu multiverse repository.

sudo apt-get install libcgal*

For TSP algorithm (optional)

wget http://downloads.sourceforge.net/gaul/gaul-devel-0.1849-0.tar.gz?
modtime=1114163427&big_mirror=0
tar -xzf gaul-devel-0.1849-0.tar.gz
cd gaul-devel-0.1849-0/
./configure --disable-slang
make
sudo make install

2. Compile pgRouting core (with TSP and DD flag on)

svn checkout http://pgrouting.postlbs.org/svn/pgrouting/trunk pgrouting

cd pgrouting/
cmake -DWITH_TSP=ON -DWITH_DD=ON .
make
sudo make install

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 7/20

http://pgrouting.postlbs.org/wiki/pgRoutingDocs#Installation

3. Setup PostgreSQL

Set local database connections to "trust" in "pg_hba.conf" to be able to work with PostgreSQL as
user "postgres". Then restart PostgreSQL.

sudo gedit /etc/postgresql/8.3/main/pg_hba.conf
sudo /etc/init.d/postgresql-8.3 restart

4. Create routing database

To test your installation create a first routing database and load the routing functions into this
database.

createdb -U postgres routing
createlang -U postgres plpgsql routing

Add PostGIS functions

psql -U postgres -f /usr/share/postgresql-8.3-postgis/lwpostgis.sql routing
psql -U postgres -f /usr/share/postgresql-8.3-postgis/spatial_ref_sys.sql
routing

Add pgRouting functions

psql -U postgres -f /usr/share/postlbs/routing_core.sql routing
psql -U postgres -f /usr/share/postlbs/routing_core_wrappers.sql routing
psql -U postgres -f /usr/share/postlbs/routing_topology.sql routing

Add TSP functions (optional)

psql -U postgres -f /usr/share/postlbs/routing_tsp.sql routing
psql -U postgres -f /usr/share/postlbs/routing_tsp_wrappers.sql routing

Add Driving Distance functions (optional)

psql -U postgres -f /usr/share/postlbs/routing_dd.sql routing
psql -U postgres -f /usr/share/postlbs/routing_dd_wrappers.sql routing

Now we can proceed to the next step to load the network data.

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 8/20

Load your network data and create a network topology
Some network data already comes with a network topology that can be used with pgRouting
immediately. But usually the data is in a different format than we need for pgRouting. Often
network data is stored in the Shape file format (.shp) and we can use PostGIS' shape2postgresql
converter to import the data into the database. OpenStreetMap stores its data as XML and it has
its own importing tools for PostgreSQL database.

Later we will use the osm2pgrouting converter. But it does much more than the basic steps for
simple routing, so we will start this workshop with the minimum required attributes.

Load the network data

After creating the workshop database and adding the PostGIS and pgRouting functions to this
database (see previous chapter), we load the sample data to our database:

psql -U postgres routing
\i /home/<user>/ways_without_topology.sql

Note: The SQL dump file was made from a database which already had PostGIS functions loaded,
so it will report errors during import that these functions already exist. You can ignore these errors.

Let's see witch tables have been created:

\d

 List of relations
 Schema | Name | Type | Owner
--------+------------------+-------+----------
 public | geometry_columns | table | postgres
 public | spatial_ref_sys | table | postgres
 public | ways | table | postgres
(3 rows)

\d ways

 Table "public.ways"
 Column | Type | Modifiers
----------+------------------+-----------
 gid | integer | not null
 length | double precision |
 name | character(200) |
 the_geom | geometry |
Indexes:
 "ways_pkey" PRIMARY KEY, btree (gid)
Check constraints:
 "enforce_dims_the_geom" CHECK (ndims(the_geom) = 2)
 "enforce_geotype_the_geom" CHECK (geometrytype(the_geom) =
'MULTILINESTRING'::text OR the_geom IS NULL)
 "enforce_srid_the_geom" CHECK (srid(the_geom) = 4326)

Create network topology

Having your data imported into a PostgreSQL database usually requires one more step for
pgRouting. You have to make sure that your data provides a correct network topology, which
consists of links with source and target ID each.

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 9/20

If your network data doesn't have such network topology information already you need to run the
"assign_vertex_id" function. This function assigns a source and a target ID to each link and it can
"snap" nearby vertices within a certain tolerance.

assign_vertex_id('<table>', float tolerance, '<geometry column', '<gid>')

First we have to add source and target column, then we run the assign_vertex_id function ... and
wait.

ALTER TABLE ways ADD COLUMN source integer;
ALTER TABLE ways ADD COLUMN target integer;
SELECT assign_vertex_id('ways', 0.00001, 'the_geom', 'gid');

Note: The dimension of the tolerance parameter depends on your data projection. Usually it's
either "degrees" or "meters". Because OSM data has a very good quality for Cape town we can
choose a very small "snapping" tolerance: 0.00001 degrees.

Add indices

Fortunately we didn't need to wait too long because the data is small. But your network data might
be very large, so it's a good idea to add an index on source, target and geometry column.

CREATE INDEX source_idx ON ways(source);
CREATE INDEX target_idx ON ways(target);
CREATE INDEX geom_idx ON ways USING GIST(the_geom GIST_GEOMETRY_OPS);

After these steps our routing database look like this:

\d

 List of relations
 Schema | Name | Type | Owner
--------+---------------------+----------+----------
 public | geometry_columns | table | postgres
 public | spatial_ref_sys | table | postgres
 public | vertices_tmp | table | postgres
 public | vertices_tmp_id_seq | sequence | postgres
 public | ways | table | postgres
(5 rows)

\d ways

 Table "public.ways"
 Column | Type | Modifiers
----------+------------------+-----------
 gid | integer | not null
 length | double precision |
 name | character(200) |
 the_geom | geometry |
 source | integer |
 target | integer |
Indexes:
 "ways_pkey" PRIMARY KEY, btree (gid)
Check constraints:
 "enforce_dims_the_geom" CHECK (ndims(the_geom) = 2)
 "enforce_geotype_the_geom" CHECK (geometrytype(the_geom) =
'MULTILINESTRING'::text OR the_geom IS NULL)
 "enforce_srid_the_geom" CHECK (srid(the_geom) = 4326)

Now we are ready for routing with Dijkstra algorithm!

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 10/20

pgRouting with Dijkstra algorithm
Dijkstra algorithm was the first algorithm implemented in pgRouting. It doesn't require more
attributes than source and target ID, and it can distinguish between directed and undirected
graphs. You can specify if your network has "reverse cost" or not.

shortest_path(sql text,

 source_id integer,
 target_id integer,
 directed boolean,
 has_reverse_cost boolean)

Note:
• Source and target IDs are vertex IDs.
• Undirected graphs ("directed false") ignores "has_reverse_cost" setting

Shortest Path Dijkstra core function

Each algorithm has its core function (implementation), which is the base for its wrapper functions.

SELECT * FROM shortest_path('
SELECT gid as id,

 source::integer,
 target::integer,
 length::double precision as cost
FROM ways',

10, 20, false, false);

 vertex_id | edge_id | cost
-----------+---------+---------------------
 10 | 293 | 0.0059596293824534
 9 | 4632 | 0.0846731039249787
 3974 | 4633 | 0.0765635090514303
 2107 | 4634 | 0.0763951531894937
 ... | ... | ...
 20 | -1 | 0
(63 rows)

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 11/20

Dijkstra Wrapper functions

Wrapper functions extend the core functions with transformations, bounding box limitations, etc..

Wrapper WITHOUT bounding box

Wrappers can change the format and ordering of the result. They often set default function
parameters and make the usage of pgRouting more simple.

SELECT gid, AsText(the_geom) AS the_geom
FROM dijkstra_sp('ways', 10, 20);

 gid | the_geom
--------+---
 293 | MULTILINESTRING((18.4074149 -33.9443308,18.4074019 -33.9443833))
 4632 | MULTILINESTRING((18.4074149 -33.9443308,18.4077388 -33.9436183))
 4633 | MULTILINESTRING((18.4077388 -33.9436183,18.4080293 -33.9429733))
 ... | ...
 762 | MULTILINESTRING((18.4241422 -33.9179275,18.4237423 -33.9182966))
 761 | MULTILINESTRING((18.4243523 -33.9177154,18.4241422 -33.9179275))
(62 rows)

Wrapper WITH bounding box

You can limit your search area by adding a bounding box. This will improve performance especially
for large networks.

SELECT gid, AsText(the_geom) AS the_geom
FROM dijkstra_sp_delta('ways', 10, 20, 0.1);

 gid | the_geom
--------+---
 293 | MULTILINESTRING((18.4074149 -33.9443308,18.4074019 -33.9443833))
 4632 | MULTILINESTRING((18.4074149 -33.9443308,18.4077388 -33.9436183))
 4633 | MULTILINESTRING((18.4077388 -33.9436183,18.4080293 -33.9429733))
 ... | ...
 762 | MULTILINESTRING((18.4241422 -33.9179275,18.4237423 -33.9182966))
 761 | MULTILINESTRING((18.4243523 -33.9177154,18.4241422 -33.9179275))
(62 rows)

Note: The projection of OSM data is "degree", so we set a bounding box containing start and end
vertex plus a 0.1 degree buffer for example.

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 12/20

pgRouting with A-Star algorithm
A-Star algorithm is another well-known routing algorithm. It adds geographical information to
source and target of each network link. This enables the shortest path search to prefer links which
are closer to the target of the search.

Prepare routing table for A-Star

For A-Star you need to prepare your network table and add latitute/longitude columns (x1, y1 and
x2, y2) and calculate their values.

ALTER TABLE ways ADD COLUMN x1 double precision;
ALTER TABLE ways ADD COLUMN y1 double precision;
ALTER TABLE ways ADD COLUMN x2 double precision;
ALTER TABLE ways ADD COLUMN y2 double precision;

UPDATE ways SET x1 = x(startpoint(the_geom));
UPDATE ways SET y1 = y(startpoint(the_geom));
UPDATE ways SET x2 = x(endpoint(the_geom));
UPDATE ways SET y2 = y(endpoint(the_geom));

Note: "endpoint()" function fails for some versions of PostgreSQL (ie. 8.2.5, 8.1.9). A workaround
for that problem is using the "PointN()" function instead:

UPDATE ways SET x1 = x(PointN(the_geom, 1));
UPDATE ways SET y1 = y(PointN(the_geom, 1));
UPDATE ways SET x2 = x(PointN(the_geom, NumPoints(the_geom)));
UPDATE ways SET y2 = y(PointN(the_geom, NumPoints(the_geom)));

Shortest Path A-Star core function

Shortest Path A-Star function is very similar to the Dijkstra function, though it prefers links that are
close to the target of the search. The heuristics of this search are predefined, so you need to
recompile pgRouting if you want to make changes to the heuristic function itself.

shortest_path_astar(sql text,
 source_id integer,
 target_id integer,
 directed boolean,
 has_reverse_cost boolean)

Note:
● Source and target IDs are vertex IDs.
● Undirected graphs ("directed false") ignores "has_reverse_cost" setting

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 13/20

Example of A-Star core function

SELECT * FROM shortest_path_astar('
SELECT gid as id,

 source::integer,
 target::integer,
 length::double precision as cost,
 x1, y1, x2, y2
FROM ways',

10, 20, false, false);

vertex_id | edge_id | cost
-----------+---------+---------------------
 10 | 293 | 0.0059596293824534
 9 | 4632 | 0.0846731039249787
 3974 | 4633 | 0.0765635090514303
 ... | ... | ...
 20 | -1 | 0
(63 rows)

Wrapper function WITH bounding box

Wrapper functions extend the core functions with transformations, bounding box limitations, etc..

SELECT gid, AsText(the_geom) AS the_geom
FROM astar_sp_delta('ways', 10, 20, 0.1);

 gid | the_geom
--------+---
 293 | MULTILINESTRING((18.4074149 -33.9443308,18.4074019 -33.9443833))
 4632 | MULTILINESTRING((18.4074149 -33.9443308,18.4077388 -33.9436183))
 4633 | MULTILINESTRING((18.4077388 -33.9436183,18.4080293 -33.9429733))
 ... | ...
 762 | MULTILINESTRING((18.4241422 -33.9179275,18.4237423 -33.9182966))
 761 | MULTILINESTRING((18.4243523 -33.9177154,18.4241422 -33.9179275))
(62 rows)

Note:
● There is currently no wrapper function for A-Star without bounding box, since bounding

boxes are very useful to increase performance. If you don't need a bounding box Dijkstra
will be enough anyway.

● The projection of OSM data is "degree", so we set a bounding box containing start and end
vertex plus a 0.1 degree buffer for example.

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 14/20

pgRouting with Shooting-Star algorithm
Shooting-Star algorithm is the latest of pgRouting shortest path algorithms. Its speciality is that it
routes from link to link, not from vertex to vertex as Dijkstra and A-Star algorithms do. This makes it
possible to define relations between links for example, and it solves some other vertex-based
algorithm issues like "parallel links", which have same source and target but different costs.

Prepare routing table for Shooting-Star

For Shooting-Star you need to prepare your network table and add the "reverse_cost" and
"to_cost" column. Like A-Star this algorithm also has a heuristic function, which prefers links closer
to the target of the search.

ALTER TABLE ways ADD COLUMN reverse_cost double precision;
UPDATE ways SET reverse_cost = length;

ALTER TABLE ways ADD COLUMN to_cost double precision;
ALTER TABLE ways ADD COLUMN rule text;

Shortest Path Shooting-Star core function

Shooting-Star algorithm introduces two new attributes:

● rule: a string with a comma separated list of edge IDs, which describes a rule for turning
restriction (if you came along these edges, you can pass through the current one only with
the cost stated in to_cost column)

● to_cost: a cost of a restricted passage (can be very high in a case of turn restriction or
comparable with an edge cost in a case of traffic light)

shortest_path_shooting_star(sql text,
 source_id integer,
 target_id integer,
 directed boolean,
 has_reverse_cost boolean)

Note:
● Source and target IDs are link Ids.
● Undirected graphs ("directed false") ignores "has_reverse_cost" setting

Example for Shooting-Star "rule"

Shooting* algorithm calculates a path from edge to edge (not from vertex to vertex). Column
vertex_id contains start vertex of an edge from column edge_id.

To describe turn restrictions:

 gid | source | target | cost | x1 | y1 | x2 | y2 | to_cost | rule
-----+--------+--------+------+----+----+----+----+---------+------
 12 | 3 | 10 | 2 | 4 | 3 | 4 | 5 | 1000 | 14

means that the cost of going from edge 14 to edge 12 is 1000, and

 gid | source | target | cost | x1 | y1 | x2 | y2 | to_cost | rule
-----+--------+--------+------+----+----+----+----+---------+------
 12 | 3 | 10 | 2 | 4 | 3 | 4 | 5 | 1000 | 14, 4

means that the cost of going from edge 14 to edge 12 through edge 4 is 1000.

If you need multiple restrictions for a given edge then you have to add multiple records for that

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 15/20

edge each with a separate restriction.

 gid | source | target | cost | x1 | y1 | x2 | y2 | to_cost | rule
-----+--------+--------+------+----+----+----+----+---------+------
 11 | 3 | 10 | 2 | 4 | 3 | 4 | 5 | 1000 | 4
 11 | 3 | 10 | 2 | 4 | 3 | 4 | 5 | 1000 | 12

means that the cost of going from either edge 4 or 12 to edge 11 is 1000. And then you always
need to order your data by gid when you load it to a shortest path function..

Example of Shooting-Star core function

SELECT * FROM shortest_path_shooting_star('
SELECT gid as id,

 source::integer,
 target::integer,
 length::double precision as cost,
 x1, y1, x2, y2,
 rule, to_cost
FROM ways',

293, 761, false, false);

 vertex_id | edge_id | cost
-----------+---------+---------------------
 4232 | 293 | 0.0059596293824534
 3144 | 293 | 0.0059596293824534
 4232 | 4632 | 0.0846731039249787
 ... | ... | ...
 51 | 761 | 0.0305298478239596
(63 rows)

Wrapper function WITH bounding box

Wrapper functions extend the core functions with transformations, bounding box limitations, etc..

SELECT gid, AsText(the_geom) AS the_geom
FROM shootingstar_sp('ways', 293, 761, 0.1, 'length', true, true);

 gid | the_geom
--------+---
 293 | MULTILINESTRING((18.4074149 -33.9443308,18.4074019 -33.9443833))
 293 | MULTILINESTRING((18.4074149 -33.9443308,18.4074019 -33.9443833))
 4632 | MULTILINESTRING((18.4074149 -33.9443308,18.4077388 -33.9436183))
 ... | ...
 762 | MULTILINESTRING((18.4241422 -33.9179275,18.4237423 -33.9182966))
 761 | MULTILINESTRING((18.4243523 -33.9177154,18.4241422 -33.9179275))
(62 rows)

Note:
● There is currently no wrapper function for A-Star without bounding box, since bounding

boxes are very useful to increase performance. If you don't need a bounding box Dijkstra
will be enough anyway.

● The projection of OSM data is "degree", so we set a bounding box containing start and end
vertex plus a 0.1 degree buffer for example.

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 16/20

osm2pgrouting data converter

This tool makes it easy to import OpenStreetMap data and use it with pgRouting. It creates
topology automatically and creates tables for feature types and road classes. osm2pgrouting was
primarily written by Daniel Wendt and is now hosted on the pgRouting project site:

http://pgrouting.postlbs.org/wiki/tools/osm2pgrouting

How to install (Ubuntu 9.04)

Check out the latest version from SVN repository:

svn checkout
http://pgrouting.postlbs.org/svn/pgrouting/tools/osm2pgrouting/trunk
osm2pgrouting

Required packages/libraries:

1. PostgreSQL

2. PostGIS

3. pgRouting

4. Boost library

5. Expat library

6. libpq library

Note: if you already compiled pgRouting point 1. to 4. should already be installed.

Then compile

cd osm2pgrouting
make

In case Boost library is missing:

sudo apt-get update
sudo apt-get install libboost-graph-dev

Get Japan OSM data

Download OSM files of Japan from Cloudmade server:

wget http://downloads.cloudmade.com/asia/japan/japan.osm.bz2
bunzip2 japan.osm.bz2

How to use osm2pgrouting

1. First you need to create a database and add PostGIS and pgRouting functions:

createdb -U postgres osm
createlang -U postgres plpgsql osm

psql -U postgres -f /usr/share/postgresql-8.3-postgis/lwpostgis.sql osm
psql -U postgres -f /usr/share/postgresql-8.3-postgis/spatial_ref_sys.sql osm

psql -U postgres -f /usr/share/postlbs/routing_core.sql osm
psql -U postgres -f /usr/share/postlbs/routing_core_wrappers.sql osm
psql -U postgres -f /usr/share/postlbs/routing_topology.sql osm

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 17/20

http://downloads.cloudmade.com/asia/japan/japan.osm.bz2
http://pgrouting.postlbs.org/wiki/tools/osm2pgrouting

2. You can define the features and attributes to be imported from the OpenStreetMap XML file in
the configuration file (default: mapconfig.xml)

3. Open a terminal window and run osm2pgrouting with the following paramters

./osm2pgrouting -file /home/<user>/japan.osm \
-conf mapconfig.xml \
-dbname osm \
-user user \
-host localhost \
-clean

Other available parameters are:

 * required:
-file <file> -- name of your osm xml file
-dbname <dbname> -- name of your database
-user <user> -- name of the user, which have write access to

 the database
-conf <file> -- name of your configuration xml file

 * optional:
-host <host> -- host of your postgresql database (default:

127.0.0.1)
-port <port> -- port of your database (default: 5432)
-passwd <passwd> -- password for database access
-clean -- drop peviously created tables

4. Connect to your database and see the tables that have been created

psql -U postgres osm
\d
 List of relations
 Schema | Name | Type | Owner
--------+---------------------+----------+----------
 public | classes | table | postgres
 public | geometry_columns | table | postgres
 public | nodes | table | postgres
 public | spatial_ref_sys | table | postgres
 public | types | table | postgres
 public | vertices_tmp | table | postgres
 public | vertices_tmp_id_seq | sequence | postgres
 public | ways | table | postgres
(8 rows)

Note: If tables are missing you might have forgotten to add PostGIS or pgRouting functions to your
database.

Let's do some more advanced routing with those extra information about road types and road
classes.

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 18/20

Advanced usage of pgRouting shortest path search
An ordinary shortest path query with result usualy looks like this:

SELECT * FROM shortest_path_shooting_star(
'SELECT gid as id, source, target, length as cost, x1, y1, x2, y2, rule,
to_cost, reverse_cost FROM ways', 1955, 5787, true, true);

 vertex_id | edge_id | cost
-----------+---------+---------------------
 8134 | 1955 | 0.00952475464810279
 5459 | 1956 | 0.0628075563112871
 8137 | 1976 | 0.0812786367080268
 5453 | 758 | 0.0421747270358272
 5456 | 3366 | 0.0104935732514831
 11086 | 3367 | 0.113400030221047
 4416 | 306 | 0.111600379959229
 4419 | 307 | 0.0880411972519595
 4422 | 4880 | 0.0208599114366633
 5101 | 612 | 0.0906859882381495
 5102 | 5787 | 80089.8820919459
(11 rows)

That is usually called SHORTEST path, which means that a length of an edge is its cost.

Costs can be anything ("Weighted costs")

But in real networks we have different limitations or preferences for different road types for
example. In other words, we want to calculate CHEAPEST path - a path with a minimal cost. There
is no limitation in what we take as costs.

When we convert data from OSM format using the osm2pgrouting tool, we get these two additional
tables for road types and classes:

\d classes

 id | name
-----+------------
 2 | cycleway
 1 | highway
 4 | junction
 3 | tracktype

\d types

 id | type_id | name | cost
-----+---------+--------------------+--------
 201 | 2 | lane | 1
 204 | 2 | opposite | 1
 203 | 2 | opposite_lane | 1
 202 | 2 | track | 1
 117 | 1 | bridleway | 1
 113 | 1 | bus_guideway | 1
 118 | 1 | byway | 1
 115 | 1 | cicleway | 1
 116 | 1 | footway | 1
 108 | 1 | living_street | 1
 101 | 1 | motorway | 0.2
 103 | 1 | motorway_junction | 0.2

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 19/20

 102 | 1 | motorway_link | 0.2
 114 | 1 | path | 100
 111 | 1 | pedestrian | 100
 106 | 1 | primary | 100
 107 | 1 | primary_link | 100
 107 | 1 | residential | 100
 100 | 1 | road | 0.7
 100 | 1 | unclassified | 0.7
 106 | 1 | secondary | 10
 109 | 1 | service | 10
 112 | 1 | services | 10
 119 | 1 | steps | 10
 107 | 1 | tertiary | 10
 110 | 1 | track | 10
 104 | 1 | trunk | 10
 105 | 1 | trunk_link | 10
 401 | 4 | roundabout | 10
 ...

Road class is linked with the ways table by class_id field. Cost values for classes table are
assigned arbitrary.

UPDATE classes SET cost=15 WHERE id>300;

For better performance it is worth to create an index on id field of classes table.

CREATE INDEX class_idx ON ways (id);

The idea behind these two tables is to specify a factor to be multiplied with the cost of each link
(usually length):

SELECT * FROM shortest_path_shooting_star(
'SELECT gid as id, class_id, source, target, length*c.cost as cost,

x1, y1, x2, y2, rule, to_cost, reverse_cost*c.cost as reverse_cost
FROM ways w, classes c
WHERE class_id=c.id', 1955, 5787, true, true);

 vertex_id | edge_id | cost
-----------+---------+---------------------
 8134 | 1955 | 0.00666732825367195
 5459 | 1956 | 0.043965289417901
 8137 | 1992 | 0.126646230936747
 5464 | 762 | 0.827868704808978
 5467 | 763 | 0.16765902528648
 ... | ... | ...
 9790 | 5785 | 0.00142107468268373
 8548 | 5786 | 0.00066608685984761
 16214 | 5787 | 0.0160179764183892
(69 rows)

We can see that the shortest path result is completely different from the example before. We call
this "weighted costs".

Another example is to restrict access to roads of a certain type:

UPDATE classes SET cost=100000 WHERE name LIKE 'motorway%';

Through subqueries you can "mix" your costs as you like and this will change the results of your
routing request immediately. Cost changes will affect the next shortest path search, and there is no
need to rebuild your network.

FOSS4G2009 Tokyo/Osaka – pgRouting workshop Page 20/20

	FOSS4G routing with pgRouting tools and OpenStreetMap road data
	Abstract
	Description
	Arramagong Live DVD
	Get the Source
	Further informations

	About pgRouting
	About OpenStreetMap
	Installation of pgRouting
	1. Install required packages
	2. Compile pgRouting core (with TSP and DD flag on)
	3. Setup PostgreSQL
	4. Create routing database

	Load your network data and create a network topology
	Load the network data
	Create network topology
	Add indices

	pgRouting with Dijkstra algorithm
	Shortest Path Dijkstra core function
	Dijkstra Wrapper functions
	Wrapper WITHOUT bounding box
	Wrapper WITH bounding box

	pgRouting with A-Star algorithm
	Prepare routing table for A-Star
	Shortest Path A-Star core function
	Example of A-Star core function
	Wrapper function WITH bounding box

	pgRouting with Shooting-Star algorithm
	Prepare routing table for Shooting-Star
	Shortest Path Shooting-Star core function
	Example for Shooting-Star "rule"
	Example of Shooting-Star core function
	Wrapper function WITH bounding box

	osm2pgrouting data converter
	How to install (Ubuntu 9.04)
	Get Japan OSM data
	How to use osm2pgrouting

	Advanced usage of pgRouting shortest path search
	Costs can be anything ("Weighted costs")

