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Introduction

In this chapter

■ What This Guide Covers

■ Essential Concepts

■ Preparing to Run the
Examples

■ Resources and
Repositories

■ Hello, Map – Displaying a
Web Layout

■ Hello, Map 2 – Adding a
Custom Command

■ Understanding Services
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What This Guide Covers
This guide describes how to use the MapGuide Open Source Web API and
Viewer API.

It assumes you have read the MapGuide Getting Started guide and are familiar
with using Autodesk® MapGuide Studio or MapGuide Open Source Web
Studio. Most examples also assume that you have installed the sample data
and sample applications supplied with MapGuide.

This guide provides a high-level overview of the APIs. More detailed
information is provided in the on-line MapGuide Web API Reference and
MapGuide Viewer API Reference.

Essential Concepts
Refer to the MapGuide Getting Started guide for details about the MapGuide
architecture and components. It is important to understand the relationship
between a MapGuide Viewer, a MapGuide Web application, and the MapGuide
site. It is also important to understand resources and repositories.

Web applications reside on the Web Server. They are normally executed by
requests from a MapGuide Viewer. They can in turn communicate with the
MapGuide site and send data back to the Viewer.

When you define a web layout, using Autodesk® MapGuide Studio or some
other method, you also define toolbar and menu commands. These can be
standard pre-defined Viewer commands like pan, zoom, and refresh, or they
can be custom commands. Custom commands are a way of extending
MapGuide to interact with your mapping data. The custom commands are
HTML pages, generated on the server using PHP, ASP.NET, or Java (JSP). These
languages can use the Web API to retrieve, manipulate, and update mapping
data.

The current version of MapGuide Open Source Web Studio does not create or
edit web layouts. It is possible, however, to create and edit web layouts using
the Mapagent HTML pages at
http://ServerAddress/mapguide/mapagent/index.html. Get an existing web
layout, such as the web layout supplied with the sample applications, using
the GetResourceContent and GetResourceHeader links. Edit the XML in a text
editor, then save to the site repository using the SetResource link.
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Many custom commands run in the task area, a section of the Viewer that is
designed for user input/output. For more details about the task area and how
it integrates with the rest of the Viewer, see The MapGuide Viewer (page 15).

Preparing to Run the Examples
MapGuide includes a set of sample applications. Some of them correspond
directly to chapters in this Developer’s Guide. These samples are designed to
show one or two key concepts at a time.

Other sample applications are more full-featured. These are designed to show
some of the capabilities of MapGuide. They are not discussed in detail in this
guide, but they do build upon the basic concepts.

Complete examples are available from http://mapguide.osgeo.org/downloads.html.
There are two required components: the source code and a package file for
creating the web layouts. The Sheboygan sample data must also be installed.

NOTE The Web API supports .NET, Java, and PHP. For simplicity, the examples in
this guide use PHP. However, many of the sample applications are available in all
development languages.

To run the examples on a Linux installation, change any Windows-specific
file paths to corresponding Linux paths.

This guide includes many code snippets. In most cases, the snippets are
incomplete, lacking initialization and error-checking. For more complete
versions, refer to the sample applications.

The sample applications also include links to the MapGuide documentation,
but the links only work if the documentation files are visible to the web server.
By default, the installation program installs the documentation in the
...\WebServerExtensions\Help folder. If you copy or move the Help folder to
...\WebServerExtensions\www\Help the documentation will be available directly
from the main page of the sample applications.

Resources and Repositories
A MapGuide repository is a database that stores and manages the data for the
site. The repository stores all data except data that is stored in external
databases. Data stored in a repository is a resource.

Preparing to Run the Examples | 3
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Types of data stored in the repository:

■ Feature data from SHP and SDF files

■ Drawing data from DWF files

■ Map symbols

■ Layer definitions

■ Map definitions

■ Web layouts

■ Connections to feature sources, including database credentials

Library and Session

Persistent data that is available to all users is stored in the Library repository.

In addition, each session has its own repository, which stores the run-time
map state. It can also be used to store other data, like temporary layers that
apply only to an individual session. For example, a temporary layer might be
used to overlay map symbols indicating places of interest.

Data in a session repository is destroyed when the session ends.

A resource identifier for a resource in the Library will always begin with
Library://. For example:

Library://Samples/Layouts/SamplesPhp.WebLayout

A resource identifier for a session resource will always begin with Session:,
followed by the session id. For example:

Session:70ea89fe-0000-1000-8000-005056c00008_en//layer.LayerDefinition

Maps

A map (MgMap object) is created from a map definition resource. The map
definition contains basic information about the map, including things like

■ the coordinate system used in the map

■ the initial map extents
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■ references to the layer definitions for layers in the map

When the MgMap object is created, it is initialized with data from the map
definition. As a user interacts with the map, the MgMap may change, but the
map definition does not.

The map is saved in the session repository so it is available to all pages in the
same session. You cannot save a map in the library repository.

Map creation is handled by the Viewers. When a Viewer first loads, it creates
a map in the session repository. The map name is taken from the map
definition name. For example, if a web layout references a map definition
named Sheboygan.MapDefinition, then the Viewer will create a map named
Sheboygan.Map.

If your application does not use a Viewer, you can create the map and store
it in the repository yourself. To do this, your page must

■ Create an MgMap object.

■ Initialize the MgMap object from a map definition.

■ Assign a name to the MgMap object.

■ Save the map in the session repository.

For example, the following section of code creates an MgMap object named
Sheboygan.Map, based on Sheboygan.MapDefinition.

$mapDefId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Maps/Sheboygan.MapDefinition");

$map = new MgMap();

$mapName = $mapDefId->GetName();

$map->Create($resourceService, $mapDefId, $mapName);

$mapId = new MgResourceIdentifier(

"Session:$sessionId//$mapName." . MgResourceType::Map);

$map->Save($resourceService, $mapId);

Hello, Map – Displaying a Web Layout
A web layout describes how the map looks when it is displayed in a web
browser. Using Studio or some other method to edit the web layout resource,

Hello, Map – Displaying a Web Layout | 5



you can create and customize the layout, changing how it looks in a browser
and what features are enabled.

Displaying the web layout requires a compatible web browser and a MapGuide
Viewer. There are two Viewers, depending on the needs of your site. The DWF
Viewer runs as a control within the Internet Explorer browser. It requires that
users install the Autodesk DWF Viewer.

The AJAX Viewer does not require installing any additional software. It runs
using most browsers, including Internet Explorer, Mozilla Firefox, and Safari.

The simplest way to display a web layout is to pass its resource identifier as a
GET parameter to the Viewer URL. For example, the following will display a
web layout using the AJAX Viewer running on localhost:

http://localhost/mapguide/mapviewerajax/?

WEBLAYOUT=Library%3a%2f%2fSamples%2fLayouts%2fSample.WebLayout

Authentication

All MapGuide sites require authentication with user id and password. If
authentication succeeds, MapGuide creates a session, identified by a unique
session id. This keeps the state consistent between the viewer and the server
across multiple HTTP requests. Subsequent access to the site requires the
session id instead of the user id. By default, the Viewer handles authentication
itself, and it prompts for user id and password when it first loads. There are
situations, though, where it is better to authenticate before loading the Viewer
page.

One common example is a site offering read-only access to visitors. For this
situation, the default MapGuide installation includes a user “Anonymous”
with an empty password.

To perform authentication before the Viewer loads, embed the Viewer in
another page using a <frame> or <iframe> element. The outer page can do
any necessary authentication, create a session, then pass the web layout and
session id to the Viewer frame.

The following example displays a web layout using the AJAX Viewer. It
performs some basic initialization and creates a session, then displays a Viewer
page using the session identifier and the web layout.
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<?php

 

$installDir =

   'C:\Program Files\MapGuideOpenSource\\';

$extensionsDir = $installDir . 'WebServerExtensions\www\\';

$viewerDir = $installDir . 'mapviewerphp\\';

include $viewerDir . 'constants.php';

MgInitializeWebTier($extensionsDir . 'webconfig.ini');

$site = new MgSite();

$site->Open(new MgUserInformation("Anonymous", ""));

$sessionId = $site->CreateSession();

$webLayout =

"Library://Samples/Layouts/SamplesPhp.WebLayout";

?>

<html>

<head>

<title>Simple Sample Application</title>

</head>

<body marginheight="0" marginwidth="0">

<iframe id="viewerFrame" width="100%" height="100%" frameborder=0

scrolling="no"

src="/mapguide/mapviewerajax/?SESSION=<?= $sessionId ?>&

WEBLAYOUT=<?= $webLayout ?>"></iframe>

</body>

</html>

Hello, Map 2 – Adding a Custom Command
Web layouts can include custom commands added to the toolbar, context
menu, task list, or task pane area of the Viewer. These custom commands
make up the MapGuide application.
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This next sample MapGuide page displays some basic information about a
map. It does not do any complicated processing. Its purpose is to illustrate
the steps required to create a MapGuide page and have it connect to a Viewer
on one side and the MapGuide site on the other.

Web Layouts and MapGuide Server Pages

A MapGuide Server Page is any PHP, ASP.NET, or JSP page that makes use of the
MapGuide Web API. These pages are typically invoked by the MapGuide
Viewer or browser and when processed result in HTML pages that are loaded
into a MapGuide Viewer or browser frame. This is the form that will be used
for most examples in this guide. It is possible, however, to create pages that
do not return HTML or interact with the Viewer at all. These can be used for
creating web services as a back-end to another mapping client or for batch
processing of your data.

Creating a MapGuide page requires initial setup, to make the proper
connections between the Viewer, the page, and the MapGuide site. Much of
this can be done using Studio. Refer to the Studio Help for details.

One part of the initial setup is creating a web layout, which defines the
appearance and available functions for the Viewer. When you define a web
layout, you assign it a resource name that describes its location in the
repository. The full resource name looks something like this:

Library://Samples/Layouts/SamplesPhp.WebLayout

When you open the web layout using a browser with either the AJAX Viewer
or the DWF Viewer, the resource name is passed as part of the Viewer URL.
Special characters in the resource name are URL-encoded, so the full URL
would look something like this, (with line breaks removed):

http://localhost/mapguide/mapviewerajax/

?WEBLAYOUT=Library%3a%2f%2fSamples%2fSheboygan%2fLayouts%2f

SheboyganPhp.WebLayout

Part of the web layout defines commands and the toolbars and menus that
contain the commands. These commands can be built-in commands, or they
can be URLs to custom pages. The web layout also includes a URL to a home
task that displays in the task pane. The home task can open other pages.

To create a new page and make it available as a command from the task list,
do the following:

■ Edit the web layout using Studio.
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■ Add a command to the web layout.

■ Set the command type to Invoke URL.

■ Set the URL of the command to the URL of your page.

■ Add the command to the Task Bar Menu.

NOTE Custom pages are loaded by the Viewer page, so a relative URL for a custom
page must start at the Viewer directory, then go up one level to reach the mapguide
directory. For example, a custom page located at
www/mapguide/samplesphp/index.php would use the following relative URL in
the web layout

../samplesphp/index.php

It is also possible to add custom commands to the toolbar and the context
menu using the same technique.

For most of the examples in this guide, however, the pages will be links from
a home page loaded in the task pane frame.

NOTE Installing the package that comes with the Developer’s Guide samples
creates a web layout automatically. The home task page of this layout contains
links to examples that correspond to chapters in the Developer’s Guide.

MapGuide Page Flow

Most MapGuide pages follow a similar processing flow. First, they create a
connection with the site server using an existing session id. Then they open
connections to any needed site services. The exact services required depend
on the page function. For example, a page that deals with map feature data
requires a feature service connection.

Once the site connection and any other service connections are open, the
page can use MapGuide Web API calls to retrieve and process data. Output
goes to the task pane or back to the Viewer. See The MapGuide Viewer (page
15) for details about sending data to the Viewer.

NOTE MapGuide pages written in PHP require one additional step because PHP
does not support enumerations compiled into extensions. To deal with this
limitation, PHP Web Extension pages must include constants.php, which is in
the mapviewerphp folder. This is not required for ASP.NET or JSP pages.
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Example Code

The following sample illustrates basic page structure. It is designed to be called
as a task from a Viewer. It connects to a MapGuide server and displays the
map name and spatial reference system for the map currently being displayed
in the Viewer.

TIP This sample is very similar to the Hello Map sample in the Developer’s Guide
samples.
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<html>

   <head><title>Hello, map</title></head>

   <body>

      <p>

      <?php

 

      // Define some common locations

      $installDir =

        'C:\Program Files\MapGuideOpenSource\\';

      $extensionsDir = $installDir . 'WebServerExtensions\www\\';

      $viewerDir = $extensionsDir . 'mapviewerphp\\';

 

      // constants.php is required to set some enumerations

      // for PHP. The same step is not required for .NET

      // or Java applications.

      include $viewerDir . 'constants.php';

 

      try

      {

         // Get the session information passed from the viewer.

         $args = ($_SERVER['REQUEST_METHOD'] == "POST")

           ? $_POST : $_GET;

         $mgSessionId = $args['SESSION']

         $mgMapName = $args['MAPNAME']

 

         // Basic initialization needs to be done every time.

         MgInitializeWebTier("$extensionsDir\webconfig.ini");

 

         // Get the user information using the session id,

         // and set up a connection to the site server.

         $userInfo = new MgUserInformation($mgSessionId);

         $siteConnection = new MgSiteConnection();

         $siteConnection->Open($userInfo);

 

         // Get an instance of the required service(s).

         $resourceService = $siteConnection->

         CreateService(MgServiceType::ResourceService);

 

         // Display the spatial reference system used for the map.

         $map = new MgMap();

         $map->Open($resourceService, $mgMapName);

 

         $srs = $map->GetMapSRS();
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echo 'Map <strong>' . $map->GetName() .

'</strong> uses this reference system: <br />' . $srs;

}

catch (MgException $e)

{

echo "ERROR: " . $e->GetMessage() . "<br />";

echo $e->GetStackTrace() . "<br />";

}

?>

</p>

</body>

</html>

How This Page Works

This example page performs the following operations:

1 Get session information.

When you first go to the URL containing the web layout, the Viewer
initiates a new session. It prompts for a user id and password, and uses
these to validate with the site server. If the user id and password are valid,
the site server creates a session and sends the session id back to the viewer.

The Viewer passes the session information every time it sends a request
to a MapGuide page. The pages use this information to re-establish a
session.

2 Perform basic initialization.

The webconfig.ini file contains parameters required to connect to the site
server, including the IP address and port numbers to use for
communication. MgInitializeWebTier() reads the file and gets the
necessary values to find the site server and create a connection.

3 Get user information.

The site server saves the user credentials along with other session
information. These credentials must be supplied when the user first
connects to the site. At that time, the Viewer authenticates the user and
creates a new session using the credentials. Using the session ID, other
pages can get an encrypted copy of the user credentials that can be used
for authentication.

4 Create a site connection.
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Any MapGuide pages require a connection to a site server, which manages
the repository and site services.

5 Create a connection to a resource service.

Access to resources is handled by a resource service. In this case, the page
needs a resource service in order to retrieve information about the map
resource.

You may need to create connections to other services, depending on the
needs of your application.

6 Retrieve map details.

The map name is also passed by the viewer to the MapGuide page. Use
this name to open a particular map resource with the resource service.
Once the map is open you can get other information. This example
displays the spatial reference system used by the map, but you can also
get more complex information about the layers that make up the map.

Understanding Services
The MapGuide site performs many different functions. These can be all done
by a single server, or you may balance the load across multiple servers. Some
essential functions must execute on the site server, while other functions may
execute on support servers.

A service performs a particular set of related functions. For example, a resource
service manages data in the repository, a feature service provides access to
feature data sources, and a mapping service provides visualization and plotting
functions.

Before a page can use a service, it must open a site connection and create an
instance of the necessary service type. The following example creates a resource
service and a feature service:

$userInfo = new MgUserInformation($mgSessionId);

$siteConnection = new MgSiteConnection();

$siteConnection->Open($userInfo);

$resourceService = $siteConnection->

CreateService(MgServiceType::ResourceService);

$featureService = $siteConnection->

CreateService(MgServiceType::FeatureService);
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The MapGuide Viewer

In this chapter

■ Introduction

■ Understanding Viewer
Frames

■ MapGuide Viewer API

■ Embedding a Viewer in
Your Own Page
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Introduction

TIP The Hello Viewer sample, in the Developer’s Guide samples, demonstrates
concepts from this chapter.

The MapGuide Viewer is a browser-based method for displaying map data in
a MapGuide application. It is a complete application, with support for standard
mapping functionality like zooming, theming, and selecting features. There
are two different versions of the Viewer:

■ DWF Viewer, which runs only within Internet Explorer, and requires a
browser plug-in

■ AJAX Viewer, which runs within Internet Explorer, Mozilla Firefox, and
Safari, without requiring a browser plug-in

As much as possible, the two versions of the Viewer operate in the same way,
so deciding which to use depends on the needs of the application. If all the
end users of the application use Internet Explorer, the DWF Viewer my be an
appropriate choice, but if some of them use a different browser the AJAX
Viewer is a better choice.

Most MapGuide applications use a Viewer, though it is possible to create
applications that perform data analysis or manipulation but do not display
using the Viewer. For example, a MapGuide application can be used as a
back-end to another mapping application.

The standard Viewer displays a map along with the following optional
components surrounding the map:

■ Tool bar

■ Layers pane

■ Properties pane

■ Status bar

■ Task bar

■ Task list (normally hidden, but available as a drop-down from the task bar)

■ Task pane

■ Context (right-click) menu

■ Zoom slider (AJAX Viewer only)
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MapGuide Viewer

The tool bar, task list, task pane, and context menu can contain a combination
of pre-defined and custom MapGuide commands.

A web layout defines how the Viewer looks and operates for a map. One
function of a web layout is to define which optional components display with
the map. All of the optional components can be disabled, leaving just the
map itself.

The web layout also defines any custom functionality added to the web page
through custom commands.

Custom Commands

Custom commands can be of two types:

■ JavaScript commands

■ Web Server Extensions pages, written in PHP, ASP.NET, or JSP

JavaScript commands are defined in the web layout as commands of type
Invoke Script. They are used primarily to interact with the Viewer, and can
use the Viewer API.

Web Server Extensions pages can be added to the web layout in two different
ways. In one method, the web layout includes a home page. This home page
is loaded in the task pane when the map first displays, and can be re-loaded
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by clicking the Home icon in the task bar. The home page can load other
pages as needed.

In addition, other task pages can be defined in the web layout as commands
of type Invoke URL. These commands can be added to the tool bar, task list,
or context menu. When a user selects one of these commands the
corresponding URL is often loaded into the task pane, though it can also be
loaded into a hidden frame so it is not visible.

Because Web Server Extensions pages are created at the web tier before being
passed to the Viewer, they can use both the Web Server Extensions API and
the Viewer API.

Understanding Viewer Frames
The MapGuide Viewers use HTML frames to divide the viewer area. Refer to
the diagram below for the locations of the following frames and frame sets:

DescriptionName

Unnamed. Contains all the Viewer frames. This can be wrapped
by an outer frame so you can embed the Viewer in your own
site.

Frame set containing the tool bar, map frame, form frame, and
script frame.

maparea

Frame containing the tool bar. Add new commands to the tool
bar by modifying the web layout.

tbFrame

Frame containing the map data. This includes the map display
and the layers and properties palettes.

mapFrame

Hidden frame that can be used to generate HTTP POST requests
for sending data to the server.

formFrame

Hidden frame that can be used to load and execute pages
without them being visible to the user. This is often used for ex-
ecuting client-side JavaScript.

scriptFrame
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DescriptionName

Frame set containing the task bar and the task frame.taskArea

Frame containing the task bar.taskBar

Frame used to hold the task list frame and the task pane frame.taskFrame

Frame used for displaying the task list. This is normally hidden,
and is shown when a user clicks the task list button in the task

taskListFrame

bar. Add new commands to the task list by modifying the web
layout.

Frame used for displaying and executing MapGuide pages. A
web layout has a default home page that displays in the task

taskPaneFrame

pane when the layout loads. Custom commands of type Invoke
URL also load in the task pane.

Frame containing the status bar.sbFrame
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(Your frameset) (optional)
(Your banner) (optional)

(2-row frameset)
(2-column frameset)

(hidden frame)
(hidden frame)

(status bar)

(tool bar) (task bar)
mapArea
tbFrame

mapFrame taskFrame

taskListFrame

taskPaneFrame

taskBar
taskArea

formFrame
scriptFrame

sbFrame

/mapguide/mapviewerajax/?
SESSION=sessionid&WEBLAYOUT=weblayout

Viewer Frames

MapGuide Viewer API
The MapGuide Viewer API is a set of JavaScript functions used to interact with
the Viewer. Many of the Viewer frames contain embedded JavaScript functions
that can be called from other locations. For full details about the available
functions, refer to the online MapGuide Viewer API Reference.
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To execute any of the Viewer API functions, call them from JavaScript
embedded in a page. There are three common techniques for this:

■ Define an Invoke Script command in the web layout. Use this technique
when you want to call the Viewer API directly from the tool bar, task list,
or context menu.

■ Load a page into the hidden script frame and execute the script when the
page loads. Use this technique when you want the Viewer to change as a
result of an action in the MapGuide page, without reloading the page.

■ Execute the JavaScript call from a page loaded in the task pane frame. The
JavaScript can execute when the page first loads or as a result of user
interaction.

It is important to know the relationships between the frames. JavaScript
executes in the context of a single frame, but it can call functions from other
frames by locating them in the frame hierarchy. The following frames are
children of the main Viewer frame:

■ tbFrame

■ mapFrame

■ formFrame

■ scriptFrame

■ taskFrame

The taskPaneFrame is a child of the taskFrame.

Custom JavaScript code can execute in the context of the main frame, the
script frame, or the task pane frame.

JavaScript defined as an Invoke Script command executes in the context of
the main frame. To execute functions in one of the other frames, identify the
function with the frame name and function name. For example, the following
calls the ZoomToView() function of the mapFrame from the main frame:

mapFrame.ZoomToView(xLoc, yLoc, newScale, true);

JavaScript loaded into the scriptFrame must go up 1 level in the hierarchy
using parent. For example:

parent.mapFrame.ZoomToView(xLoc, yLoc, newScale, true);
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JavaScript loaded into the taskPaneFrame must go up 2 levels in the hierarchy
using parent.parent. For example:

parent.parent.mapFrame.ZoomToView(xLoc, yLoc, newScale, true);

Many Viewer API calls will generate requests to the site server, either to refresh
data in the Viewer or to notify the site server of a change in Viewer state.
These requests are generated automatically.

Calling the Viewer API with an Invoke Script
Command

Use this technique when you want to call the API directly from the tool bar,
task list, or context menu.

For example, you may want to create a tool bar button that zooms and
positions the map to show a particular location. In the web layout, create a
command of type Invoke Script. Enter the API call as the script to invoke:

ZoomToView(-87.7116768, 43.7766789973, 5000, true);

Add the button to the tool bar. When a user clicks the button, the map view
repositions to the location.

Commands of type Invoke Script always execute in the context of the main
frame. This means that all main frame functions are available. To execute a
function in another frame, use the frame name as part of the function name.
For example, formFrame.Submit().

Calling the Viewer API from the Script Frame

Use this technique when you want the Viewer API calls to be made as a result
of an action in the calling page, but you do not want to reload the page. For
example, you may have a page that generates a list of locations and you would
like the user to be able to jump directly to any location, while leaving the list
still available in the task pane.

In this case, your page can load another page in the hidden script frame, using
target="scriptFrame" as part of the <a> tag. This requires creating a separate
page to load in the script frame and passing the necessary parameters when
the page loads.
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The Hello Viewer sample application contains a file named gotopoint.php
that is designed to run in the script frame. The <body> element is empty, so
the page does not produce any output. Instead, it emits a JavaScript function
to execute when the page loads. This function calls the ZoomToView() function
in the Viewer API. The essential parts of gotopoint.php are:

<script language="javascript">

function OnPageLoad()

{

parent.ZoomToView(<?= $_GET['X'] ?>,

<?= $_GET['Y'] ?>,

<?= $_GET['Scale'] ?>, true);

}

</script>

<body onLoad="OnPageLoad()">

</body>

To execute gotopoint.php from the task frame, insert code similar to the
following:

$xLocation = -87.7116768; // Or calculate values

$yLocation = 43.7766789973;

$mapScale = 2000;

echo "<p><a href=\"gotopoint.php?" .

"X=$xLocation&Y=$yLocation&Scale=$mapScale\"" .

"target=\"scriptFrame\">Click to position map</a></p>";

NOTE This technique is also appropriate for calling the Web API without reloading
the task pane. See the Modifying Maps and Layers sample for an example.

Calling the Viewer API from the Task Pane

Use this technique when you want the Viewer API calls to be made when the
page loads or as a result of an onclick event. For example, if you have a task
in the task list that zooms the map to a pre-defined location, then you do not
need any user input. The Viewer should zoom as soon as the page loads.

The map frame contains a JavaScript function to center the map to a given
coordinate at a given map scale. To call this function from a page loading in
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the task pane, create a function that will be executed when the onLoad event
occurs. The following is a simple example. If you add this to the task list and
select the task, the displayed map will reposition to the given location.

<html>

<head>

<title>Viewer Sample Application - Zoom</title>

</head>

<script language="javascript">

function OnPageLoad()

{

parent.parent.ZoomToView(-87.7116768,

43.7766789973, 5000, true);

}

</script>

<body onLoad="OnPageLoad()">

<h1>Zooming...</h1>

</body>

</html>

Use a similar technique to call custom JavaScript based on an action in the
task pane, like clicking a link.

Extending Map Initialization Functionality

At times, it may be necessary to perform some initialization functions when
the map first loads. To accomplish this, a page loaded into the task pane can
hook into the standard map initialization process.

For example, when a browser first connects to a MapGuide site, it specifies a
web layout. The site uses this layout to determine which Viewer components
to enable and which map to display in the map area. At the time that the task
pane first loads, the map name is not yet known. It may be required for some
operations, though.

The Hello Viewer Sample

The Hello Viewer sample, installed with the Developer’s Guide samples, shows
simple examples of using the Viewer API from different parts of a web layout.
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The tool bar for the sample contains a custom Invoke Script command that
calls the ZoomToView() function of the mapFrame. This is executed in the context
of the main frame, so the function is available using

mapFrame.ZoomToView()

The task pane loads a page that shows two other ways of calling ZoomToView().
One way loads a custom page into the hidden scriptFrame. The page reads
GET parameters and passes them to the JavaScript function call. This is executed
in the context of the scriptFrame, so ZoomToView() is available using

parent.mapFrame.ZoomToView()

Another way calls ZoomToView() directly when a link is clicked, using the
JavaScript onclick event. This is executed in the context of the taskPaneFrame,
so ZoomToView() is available using

parent.parent.mapFrame.ZoomToView()

The Developer’s Guide samples also demonstrate a more advanced method
for using JavaScript in a Viewer. The file index.php includes an external
JavaScript file that solves 2 problems:

■ When a map is first loading, the task pane displays before the map has
been fully initialized. This can cause problems if users click any links in
the task pane that depend on the map being available.

■ The first time the Viewer loads a page into the task pane, it passes SESSION
and WEBLAYOUT as GET parameters. The map name is not known until after
the web layout has loaded. When a user clicks the Home button, the Viewer
reloads the home page in the task pane, but passes SESSION and MAPNAME
as GET parameters instead. In some cases, it may be useful for the home
page to have the map name when it first loads.

To deal with these problems, the Hello Viewer sample loads
pageLoadFunctions.js, which attaches a function to the window.onload event
of the page in the task pane. This function does the following:

■ Replaces the OnMapLoaded() function of the main frame. This function is
called after the map has been fully initialized. The new version performs
some initialization (see below), then calls the original OnMapLoaded().

■ Saves the contents of the task pane page and replaces it with the text
“Loading...”.

■ After the map is fully initialized, it calls the new version of OnMapLoaded().
At this point, the map name is known, and is available from the
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mapFrame.GetMapName() function. The new version of OnMapLoaded()
restores the contents of the task pane page, then it searches all <a> elements,
replacing “MAPNAME=unknown” with the correct map name in the href
attributes.

See the Hello Viewer sample for links to view index.php and pageLoadFuctions.js.

Embedding a Viewer in Your Own Page
The simplest way to incorporate a MapGuide Viewer into your own site is to
create a frame set that contains a frame for your own page layout and a frame
for the Viewer. The Developer’s Guide samples use this technique. The main
page for the samples, main.php, creates a frame set where the top frame in the
set contains a site-specific page header, and the bottom frame in the set
contains the embedded Viewer. The following code contains the important
parts of main.php.
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<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

"http://www.w3.org/TR/html4/frameset.dtd">

<?php

require_once('common/common.php');

 

try

{

  // Initialize the web extensions,

  MgInitializeWebTier ($webconfigFilePath);

 

  // Connect to the site server and create a session

  $userInfo = new MgUserInformation("Author", "author");

  $site = new MgSite();

  $site->Open($userInfo);

}

catch (MgException $e)

{

  echo "Could not connect to the MapGuide site server.";

    die();

}

 

try

{

  $sessionId = $site->CreateSession();

 

  // Define some constants

  $webLayout = "Library://Samples/Layouts/SamplesPHP.WebLayout";

  $title = "Samples";

}

catch (MgException $e)

{

  echo "ERROR: " . $e->GetMessage("eng") . "\n";

  echo $e->GetStackTrace("eng") . "\n";

}

?>

 

<html>

  <head>

    <title><?= $title ?></title>

  </head>

 

  <frameset rows="110,*">

    <frame src="common/Title.php?TitleText=<?= $title ?>"
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name="TitleFrame" scrolling="NO" noresize />

<frame

src="/mapguide/mapviewerajax/?

SESSION=<?= $sessionId ?>&

WEBLAYOUT=<?= $webLayout ?>" name="ViewerFrame" />

</frameset>

</html>
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Interacting With Layers

In this chapter

■ Overview of Layers

■ Enumerating Map Layers

■ Manipulating Layers
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Overview of Layers

TIP The Interacting With Layers sample, in the Developer’s Guide samples,
demonstrates concepts from this chapter.

Layers represent vector data, raster data, and drawing data in a map. Each type
of layer has unique characteristics.

NOTE The word layer has different meanings in different contexts. A layer can
refer to the layer definition in the resource repository, and it can also refer to the
map layer. For the purposes of the Web Tier, a layer refers to a map layer, and a
layer definition refers to the layer definition in the resource repository.

Basic Layer Properties

A map contains one or more layers (MgLayer objects) that are rendered to
create a composite image. Each layer has properties that determine how it
displays in the map and map legend. Some of the properties are:

■ Layer name: A unique identifier

■ Legend label: The label for the layer as it appears in the map legend.

■ Visibility: whether the layer should be displayed in the map. Note that
actual visibility is dependent on more than just the visibility setting for a
layer. See Layer Visibility (page 32) for further details.

■ Selectable: Whether features in the layer are selectable. This only applies
to layers containing feature data.

The MgMap::GetLayers() method returns an MgLayerCollection object that
contains all the layers in the map. The MgLayerCollection::GetItem() method
returns an individual MgLayer object, by either index number in the collection
or layer name.

Layers in the collection are sorted by drawing order, with the top layers at the
beginning of the collection. For example, using PHP syntax, if $layers is a
collection containing the layers in a map, then $layers->GetItem(0) returns
the top-most layer.
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Layer Groups

Layers can be optionally grouped into layer groups. Layers in the same group
are displayed together in the legend.

The visibility for all layers in a group can be set at the group level. If the group
visibility is turned off then none of the layers in the group will be visible,
regardless of their individual visibility settings. If the group visibility is turned
on, then individual layers within the group can be made visible or not visible
separately.

Layer groups can be nested so a group can contain other groups. This provides
a finer level of control for handling layer visibility or legend groups.

The MgMap::GetLayerGroups() method returns an MgLayerGroupCollection
object that contains all the layer groups in the map.

Each layer group in a map must have a unique name, even if it is nested within
another group.

Base Layer Groups

The AJAX viewer can use base layer groups to optimize image rendering times.
Layers in a base layer group are rendered together to generate a single raster
image that can be sent to the viewer. The image is divided into tiles so only
the required tiles need to be rendered and sent, instead of the entire image.
Tiles are cached on the server; if a tile already exists in the cache it does not
need to be rendered before being sent.

Each base layer group has a series of pre-defined scales that are used for
rendering. When a request is made to view a portion of the map at a given
scale, the AJAX viewer renders the tiles at the pre-defined scale that is closest
to the requested map view scale.

Layers within a base layer group are rendered together. Visibility settings for
individual layers are ignored and the visibility setting for the group is used
instead.

Layers above the base layers will generally be vector layers with transparent
backgrounds. This makes the images small and relatively quick to load in the
viewer.

You may have more than one base layer group. Lower layers will be hidden
by higher layers unless the higher layers have transparent areas or have their
visibility turned off.
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NOTE A layer can only belong to one group at a time. It cannot be part of both
a base layer group and a regular group.

Layer Style

The data source information and style information for a layer control how
the layer looks when it displayed on a map. This is stored in the layer definition
in the repository. To change any of the data source or style information,
modify the layer definition.

Layer definitions can be modified using Studio. They can also be created and
modified dynamically using the Web Extensions API. See Modifying Maps
and Layers (page 59) for details.

Layer Visibility

Whether a layer is visible in a given map depends on three criteria:

■ The visibility setting for the layer

■ The visibility settings for any groups that contain the layer

■ The map view scale and the layer definition for that view scale

In order for a layer to be visible, its layer visibility must be on, the visibility
for any group containing the layer must be on, and the layer must have a style
setting defined for the current map view scale.

Example:Actual Visibility

For example, assume that there is a layer named Roads that is part of the layer
group Transportation. The layer has view style defined for the scale ranges
0–10000 and 10000–24000.

The following table shows some possible settings of the various visibility and
view scale settings, and their effect on the actual layer visibility.

Actual VisibilityView ScaleGroup VisibilityLayer Visibility

On10000OnOn
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Actual VisibilityView ScaleGroup VisibilityLayer Visibility

Off25000OnOn

Off10000OffOn

Off10000OnOff

Enumerating Map Layers
Map layers are contained within an MgMap object. To list the layers in a map,
use the MgMap::GetLayers() method. This returns an MgLayerCollection
object.

To retrieve a single layer, use the MgLayerCollection::GetItem method with
either an integer index or a layer name. The layer name is the name as defined
in the map, not the name of the layer definition in the repository.

For example:

$layer = $layers->GetItem('Roads');

Example

The following example lists the layers in a map, along with an indicator of
the layer visibility setting.

$layers = $map->GetLayers(); // Get layer collection

echo "<p>Layers:<br />";

$count = $layers->GetCount();

for ($i = 0; $i < $count; $i++)

{

$layer = $layers->GetItem($i);

echo $layer->GetName() . ' (' .

($layer->GetVisible() ? 'on' : 'off') . ')<br />';

}

echo '</p>';
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Manipulating Layers
Modifying basic layer properties and changing layer visibility settings can be
done directly using API calls. More complex manipulation requires modifying
layer resources in the repository. For details, see Modifying Maps and Layers
(page 59).

Changing Basic Properties

To query or change any of the basic layer properties like name, label, or group,
use the MgLayer::GetProperty() and MgLayer::SetProperty() methods,
where Property is one of the layer properties. You must save and refresh the
map for the changes to take effect.

Example

The following example toggles the label of the Roads layer between Roads and
Streets.
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MgInitializeWebTier ($webconfigFilePath);

 

$userInfo = new MgUserInformation($mgSessionId);

$siteConnection = new MgSiteConnection();

$siteConnection->Open($userInfo);

 

$resourceService =

  $siteConnection->CreateService(MgServiceType::ResourceService);

 

$map = new MgMap();

$map->Open($resourceService, $mgMapName);

 

$layers = $map->GetLayers();

 

$roadLayer = $layers->GetItem('Roads');

$roadLabel = $roadLayer->GetLegendLabel();

if ($roadLabel == 'Roads')

  $newLabel = 'Streets';

else

  $newLabel = 'Roads';

 

$roadLayer->SetLegendLabel($newLabel);

// You must save the updated map or the

// changes will not be applied

// Also be sure to refresh the map on page load.

$map->Save($resourceService);

Changing Visibility

To query the actual layer visibility, use the MgLayer::IsVisible() method.
There is no method to set actual visibility because it depends on other visibility
settings.

To query the visibility setting for a layer, use the MgLayer::GetVisible()
method. To change the visibility setting for a layer, use the
MgLayer::SetVisible() method.

To query the visibility setting for a layer group, use the MgGroup::GetVisible()
method. To change the visibility setting for a layer group, use the
MgGroup::SetVisible() method.
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To change the layer visibility for a given view scale, modify the layer resource
and save it back to the repository. See Modifying Maps and Layers (page 59)
for details.

The following example turns on the visibility for the Roads layer.

$layers = $map->GetLayers();

$roadsLayer = $layers->GetItem('Roads');

$roadsLayer->SetVisible(True);

NOTE Changing the visibility will have no effect until the map is saved and
refreshed.
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Working With Feature
Data

In this chapter

■ Overview of Features

■ Querying Feature Data

■ Active Selections

4
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Overview of Features

TIP The Working With Feature Data sample, in the Developer’s Guide samples,
demonstrates concepts from this chapter.

Understanding features is fundamental to being able to use the MapGuide
Web API. Nearly every application will need to interact with feature data in
one form or another.

Features are map objects representing items like roads (polylines), lakes
(polygons), or locations (points).

A feature source is a resource that contains a set of related features, stored in a
file or database. Some common feature source types are SDF files, SHP files,
or data in a spatial database.

For example, you may have a feature source that contains data for roads.
Feature sources can be stored in the library repository or in a session repository.
A feature source identifier describes a complete path in the repository. For
example,

Library://Samples/Sheboygan/Data/RoadCenterLines.FeatureSource

Within a single feature source there may be one or more feature classes. A
feature class describes a subset of the features in the feature source. In many
cases, there is one feature class for each feature source. For example, there may
be a Roads feature class in the RoadCenterLines feature source.

A feature class contains one or more features. Each feature has a geometry
that defines the spatial representation of the feature. Features will also generally
have one or more properties that provide additional information. For example,
a feature class containing road data may have properties for the road name
and the number of lanes. Feature properties can be of different types, like
strings, integers, and floating point numbers. Possible types are defined in the
class MgPropertyType.

In some cases, a feature property will be another feature. For example, a Roads
feature might have a Sidewalk feature as one of its properties.

A map layer may contain the features from a feature class. The features are
rendered using the feature geometry.

The Web API Feature Service provides functions for querying and updating
feature data.
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Querying Feature Data
In order to work with feature data, you must first select the features you are
interested in. This can be done with the Viewer or through Web API calls.

Feature Readers

A feature reader, represented by an MgFeatureReader object, is used to iterate
through a list of features. Typically, the feature reader is created by selecting
features from a feature source.

To create a feature reader, use the MgFeatureService::SelectFeatures()
method. See Selecting with the Web API (page 39) for details about selection.

To process the features in a feature reader, use the
MgFeatureReader::ReadNext() method. You must call this method before
being able to read the first feature. Continue calling the method to process
the rest of the features.

The MgFeatureReader::GetPropertyCount() method returns the number of
properties available for the current feature. When you know the name and
type of the feature property, call one of the
MgFeatureReader::GetPropertyType() methods (where PropertyType
represents one of the available types) to retrieve the value. Otherwise, call
MgFeatureReader::GetPropertyName() and
MgFeatureReader::GetPropertyType() before retrieving the value.

Selecting with the Web API

Selections can be created programatically with the Web API. This is done by
querying data in a feature source, creating a feature reader that contains the
features, then converting the feature reader to a selection (MgSelection object).

To create a feature reader, apply a selection filter to a feature class in the feature
source. A selection filter can be a basic filter, a spatial filter, or a combination
of the two. The filter is stored in an MgFeatureQueryOptions object.

Basic filters are used to select features based on the values of feature properties.
For example, you could use a basic filter to select all roads that have four or
more lanes.
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Spatial filters are used to select features based on their geometry. For example,
you could use a spatial filter to select all roads that intersect a certain area.

Basic Filters

Basic filters perform logical tests of feature properties. You can construct
complex queries by combining expressions. Expressions use the comparison
operators below:

MeaningOperator

Equality=

Not equal<>

Less than<

Less than or equal to<=

Greater than>

Greater than or equal to>=

Used for string comparisons. The “%” wildcard represents
any sequence of 0 or more characters. The “_” wildcard

LIKE

represents any single character. For example, “LIKE
SCHMITT%” will search for any names beginning with
“SCHMITT”.

The comparison operators can be used with numeric or string properties,
except for the LIKE operator, which can only be used with string properties.

Combine or modify expressions with the standard boolean operators AND, OR,
and NOT.
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Examples

These examples assume that the feature class you are querying has an integer
property named year and a string property named owner. To select all features
newer than 2001, create a filter like this:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter('year > 2001');

To select all features built between 2001 and 2004, create a filter like this:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter('year >= 2001 and year <= 2004');

To select all features owned by Davis or Davies, create a filter like this:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("owner LIKE 'Davi%s'");

Spatial Filters

With spatial filters, you can do comparisons using geometric properties. For
example, you can select all features that are inside an area on the map, or that
intersect an area.

NOTE For more information about geometry, see Representation of Geometry
(page 76).

There are two ways of using spatial filters:

■ Create a separate spatial filter to apply to the feature source, using the
MgFeatureQueryOptions::SetSpatialFilter() method.

■ Include spatial properties in a basic filter created with the
MgFeatureQueryOptions::SetFilter() method.

The MgFeatureQueryOptions::SetSpatialFilter() method requires an
MgGeometry object to define the geometry and a spatial operation to compare
the feature property and the geometry. The spatial operations are defined in
class MgFeatureSpatialOperations.
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To include spatial properties in a basic filter, define the geometry using WKT
format. Use the GEOMFROMTEXT() function in the basic filter, along with one
of the following spatial operations:

■ CONTAINS

■ COVEREDBY

■ CROSSES

■ DISJOINT

■ EQUALS

■ INTERSECTS

■ OVERLAPS

■ TOUCHES

■ WITHIN

■ INSIDE

NOTE Not all spatial operations can be used on all features. It depends on the
capabilities of the FDO provider that supplies the data. This restriction applies to
separate spatial filters and spatial properties that are used in a basic filter.

Creating Geometry Objects From Features

You may want to use an existing feature as part of a spatial query. To retrieve
the feature’s geometry and convert it into an appropriate format for a query,
perform the following steps:

■ Create a query that will select the feature.

■ Query the feature class containing the feature using the
MgFeatureService::SelectFeatures() method.

■ Obtain the feature from the query using the MgFeatureReader::ReadNext()
method.

■ Get the geometry data from the feature using the
MgFeatureReader::GetGeometry() method. This data is in AGF binary
format.
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■ Convert the AGF data to an MgGeometry object using the
MgAgfReaderWriter::Read() method.

For example, the following sequence creates an MgGeometry object representing
the boundaries of District 1 in the Sheboygan sample data.

$districtQuery = new MgFeatureQueryOptions();

$districtQuery->SetFilter("Autogenerated_SDF_ID = 1");

$layer = $map->GetLayers()->GetItem('Districts');

$featureReader = $layer->SelectFeatures($districtQuery);

$featureReader->ReadNext();

$districtGeometryData = $featureReader->GetGeometry('Data');

$agfReaderWriter = new MgAgfReaderWriter();

$districtGeometry = $agfReaderWriter->Read($districtGeometryData);

To convert an MgGeometry object into its WKT representation, use the
MgWktReaderWriter::Write() method, as in the following example:

$wktReaderWriter = new MgWktReaderWriter();

$districtWkt = $wktReaderWriter->Write($districtGeometry);

Examples

The following examples assume that $testArea is an MgGeometry object
defining a polygon, and $testAreaWkt is a WKT description of the polygon.

To create a filter to find all properties owned by SCHMITT in the area, use
either of the following sequences:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'SCHMITT%'");

$queryOptions->SetSpatialFilter('SHPGEOM', $testArea,

MgFeatureSpatialOperations::Inside);

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'SCHMITT%'

AND SHPGEOM inside GEOMFROMTEXT('$testAreaWkt')";
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Example: Selection

The following example creates a selection, then lists properties from the
selected features. See the Working With Feature Data sample, in the Developer’s
Guide samples, for the complete version.

It selects parcels within the boundaries of District 1 that are owned by
SCHMITT. This requires a spatial filter and a basic filter.
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$map = new MgMap($siteConnection);

$map->Open($mapName);

 

// Get the geometry for the boundaries of District 1

 

$districtQuery = new MgFeatureQueryOptions();

$districtQuery->SetFilter("Autogenerated_SDF_ID = 1");

 

$layer = $map->GetLayers()->GetItem('Districts');

$featureReader = $layer->SelectFeatures($districtQuery);

$featureReader->ReadNext();

$districtGeometryData = $featureReader->

GetGeometry('Data');

 

// Convert the AGF binary data to MgGeometry.

 

$agfReaderWriter = new MgAgfReaderWriter();

$districtGeometry = $agfReaderWriter->

Read($districtGeometryData);

 

// Create a filter to select the desired features.

// Combine a basic filter and a spatial filter.

 

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'SCHMITT%'");

 

$queryOptions->SetSpatialFilter('SHPGEOM',

$districtGeometry,

MgFeatureSpatialOperations::Inside);

 

// Select the features.

 

$layer = $map->GetLayers()->GetItem('Parcels');

$featureReader = $layer->SelectFeatures($queryOptions);

 

// For each selected feature, display the address.

 

echo '<p>Properties owned by Schmitt ';

echo 'in District 1</p><p>';

 

while ($featureReader->ReadNext())

{

  $val = $featureReader->GetString('RPROPAD');
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echo $val . '<br />';

}

echo '</p>';

Active Selections
A map may have an active selection, which is a list of features on the map
that have been selected and highlighted in the Viewer. The active selection
is part of the run-time map state, and is not stored with the map resource in
the repository.

The most direct method for creating an active selection is to use the interactive
selection tools in the Viewer. Applications can also create selections using the
Web API and apply them to a user’s view of the map.

NOTE There is a fundamental difference in how the two Viewers manage selections.
In the DWF Viewer, selection is handled entirely by the Viewer. This means that
the Web server must request the selection information before it can use it.

In the AJAX Viewer, any changes to the active selection require re-generation
of the map image. Because of this, the Web server keeps information about
the selection.

Selecting with the Viewer

In order for a feature to be selectable using the Viewer, the following criteria
must be met:

■ The layer containing the feature must be visible at the current map view
scale.

■ The selectable property for the layer must be true. Change this property
in the web layout or with the MgLayer::SetSelectable() method.

There are different selection tools available in the Viewer. They can be enabled
or disabled as part of the web layout. Each tool allows a user to select one or
more features on the map.
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Passing Viewer Information to the Web Server

The Viewers, especially the DWF Viewer, manage many details about the state
of the active map. These details are not always directly available to the Web
Server. They are local to the Viewer, and are available through JavaScript calls
to the Viewer API.

A good example of this is the active selection. The DWF Viewer maintains the
active selection. To avoid excessive traffic between the Viewer and the Web
Server, the Viewer does not notify the Web Server when the active selection
changes.

Because of this, when the Viewer makes a request to a MapGuide Server Page
on the Web Server, it must often pass information as part of the request. Some
common methods for passing this information are:

■ as an additional parameter to an Invoke URL command in a web layout

■ through an Invoke Script command that executes the Submit method of
the hidden formFrame

■ through an onClick or other event that executes the Submit method of
the hidden formFrame

The best method to use depends on the requirements of the application. If
you are invoking the request from a command defined in a web layout, you
can pass the information either as an additional parameter to an Invoke URL
command or through an Invoke Script command. Invoke URL is simpler, but
it offers a restricted set of parameters. Invoke Script has complete access to all
the JavaScript calls in the Viewer API.

If you are invoking the request from a page in the task pane, you can execute
JavaScript as part of an onClick event or a form action.

Additional Parameters to an Invoke URL
Command

With this release of MapGuide, the current selection is the only variable that
can be passed as part of an Invoke URL command.

To pass the current selection, edit the web layout. Define a new Invoke URL
command. On the Additional Parameters tab, enter a key and value. The key
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must be a valid HTTP POST key. For the value, enter $CurrentSelection. Add
the command to the toolbar, context menu, or task bar menu.

When the command is executed, the current selection is passed to the page,
along with the standard variables like SESSION and MAPNAME.

For example, if you define the key SEL to have the value $CurrentSelection,
then when the URL is invoked

$selection = $_POST['SEL'];

gets the current selection, in XML format.

See Working With the Active Selection (page 49) for details about using the
XML data.

Passing Parameters From an Invoke Script
command

An Invoke Script command in a web layout can be used to pass custom
parameters to a page. The parameters can be any values that are available via
the Viewer API.

To pass parameters, edit the web layout. Define a new Invoke Script command.
On the Additional Parameters tab, enter the JavaScript code to retrieve the
values to be passed. Add the command to the toolbar, context menu, or task
bar menu.

The JavaScript code can call Viewer API functions or other functions to retrieve
values. To pass the parameters to a page, call the Submit method of the
formFrame with the parameters, the page URL, and the name of the target
frame. Use taskPaneFrame or scriptFrame as the target frame, depending
whether the loaded page should be visible or not.

NOTE The parameters must include standard parameters like SESSION and
MAPNAME, if they are needed.

Passing Parameters From the Task Pane Frame

Passing parameters from the task pane frame is similar to passing them from
an Invoke Script command. Use the Viewer API to retrieve values and call the
Submit method of the formFrame to pass the values to another page.
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For example, the following function passes the map view scale and the center
point as parameters to a page that opens in a new window.

function submitRequest(pageUrl)

{

xmlSel = parent.parent.mapFrame.GetSelectionXML();

mapScale = parent.parent.mapFrame.GetScale();

mapCenter = parent.parent.mapFrame.GetCenter();

params = new Array(

"SESSION", parent.parent.mapFrame.GetSessionId(),

"MAPNAME", parent.parent.mapFrame.GetMapName(),

"SELECTION", xmlSel,

"SCALE", mapScale,

"CENTERX", mapCenter.X,

"CENTERY", mapCenter.Y

);

parent.parent.formFrame.Submit(pageUrl, params, "_blank");

}

To call the function, execute it as part of an onClick event or as the action in
a form. For example, clicking the following link would execute the function:

<a href="#"

onClick="submitRequest(

'/mapguide/devguide/custom_output/property_report.php');

return false;">

Click for report</a>

Working With the Active Selection

For the AJAX Viewer, whenever a selection is changed by the Viewer, the
selection information is sent to the web server so the map can be re-generated.
For the DWF Viewer, the selection information is managed by the Viewer, so
the Viewer must pass the selection information to the web server before it can
be used.

If you are writing an application that will be used by both Viewers, you can
use the DWF method, which will result in a small additional overhead for the
AJAX Viewer. Alternatively, you can write different code for each Viewer.

To retrieve and manipulate the active selection for a map (AJAX Viewer only):

1 Create an MgSelection object for the map. Initialize it to the active
selection.
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2 Retrieve selected layers from the MgSelection object.

3 For each layer, retrieve selected feature classes. There will normally be
one feature class for the layer, so you can use the
MgSelection::GetClass() method instead of the
MgSelection::GetClasses() method.

4 Call MgSelection::GenerateFilter() to create a selection filter that
contains the selected features in the class.

5 Call MgFeatureService::SelectFeatures() to create an MgFeatureReader
object for the selected features.

6 Process the MgFeatureReader object, retrieving each selected feature.

The procedure for the DWF Viewer is similar, but the Viewer must send the
selection information as part of the HTTP request. Note that this will also
work for the AJAX Viewer.

To retrieve and manipulate the active selection for a map (AJAX or DWF
Viewer):

1 Get the current selection using the Viewer API call GetSelectionXML().

2 Pass this to the Web server as part of an HTTP request. The simplest
method for this is to use the Submit() method of the formFrame. This
loads a page and passes the parameters using an HTTP POST.

3 In the page, create an MgSelection object for the map.

4 Initialize the MgSelection object with the list of features passed to the
page.

5 Retrieve selected layers from the MgSelection object.

6 For each layer, retrieve selected feature classes. There will normally be
one feature class for the layer, so you can use the
MgSelection::GetClass() method instead of the
MgSelection::GetClasses() method.

7 Call MgSelection::GenerateFilter() to create a selection filter that
contains the selected features in the class.

8 Call MgFeatureService::SelectFeatures() to create an MgFeatureReader
object for the selected features.

9 Process the MgFeatureReader object, retrieving each selected feature.
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Example: Listing Selected Parcels (AJAX or DWF
Viewer)

The steps for listing the selected parcels for the DWF Viewer are nearly the
same as for the AJAX Viewer. The major difference is you must pass the
selection information from the Viewer to your page.

One method to do this is to create a JavaScript function, then call this function
from the Viewer using an Invoke Script command or as a result of an onClick
event in the task pane. For example, the task pane of the Working With Feature
Data sample contains a JavaScript function executed by an onClick event.

function listSelection()

{

xmlSel = parent.parent.mapFrame.GetSelectionXML();

params = new Array("SESSION",

parent.parent.mapFrame.GetSessionId(),

"MAPNAME", parent.parent.mapFrame.GetMapName(),

"SELECTION", xmlSel);

pageUrl =

"/mapguide/samplesphp/working_with_feature_data/

listselection.php";

parent.parent.formFrame.Submit(pageUrl, params,

"taskPaneFrame");

}

This submits a request to listselection.php, which contains the following:
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$map = new MgMap();

$map->Open($resourceService, $mapName);

 

// ----------------------------------------------------------

// Use the following code for AJAX or DWF Viewers

// This requires passing selection data via HTTP POST

 

if (isset($_POST['SELECTION']) && $_POST['SELECTION'] != '')

{

  $selection = new MgSelection($map, $_POST['SELECTION']);

  $layers = $selection->GetLayers();

}

else

$layers = 0;

// ---------------------------------------------------------

 

if ($layers)

{

  $queryOptions = new MgFeatureQueryOptions();

  for ($i = 0; $i < $layers->GetCount(); $i++)

  {

    // Only check selected features in the Parcels layer.

 

    $layer = $layers->GetItem($i);

 

    if ($layer && $layer->GetName() == 'Parcels')

    {

 

      // Create a filter containing the IDs of the selected

      // features on this layer

 

      $layerClassName = $layer->GetFeatureClassName();

      $selectionString = $selection->GenerateFilter($layer,

        $layerClassName);

 

      // Get the feature resource for the selected layer

 

      $layerFeatureId = $layer->GetFeatureSourceId();

      $layerFeatureResource = new

        MgResourceIdentifier($layerFeatureId);

 

      // Apply the filter to the feature resource for the

      // selected layer. This returns
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// an MgFeatureReader of all the selected features.

$queryOptions->SetFilter($selectionString);

$featureReader =

$featureService->SelectFeatures($layerFeatureResource,

$layerClassName, $queryOptions);

// Process each item in the MgFeatureReader,

// displaying the owner name

while ($featureReader->ReadNext())

{

$val = $featureReader->GetString('NAME') .

'<br />&nbsp;&nbsp;' .

$featureReader->GetString('RPROPAD');

echo $val . '<br />';

}

}

}

}

else

echo 'No selected layers';

echo '</p>';

Example: Listing Selected Parcels (AJAX Viewer
only)

To simplify the page in Example: Listing Selected Parcels (AJAX or DWF Viewer)
(page 51) so it runs in the AJAX Viewer only, replace the section of code that
reads the selection data from the HTTP POST parameter:

if (isset($_POST['SELECTION']) && $_POST['SELECTION'] != '')

{

$selection = new MgSelection($map, $_POST['SELECTION']);

$layers = $selection->GetLayers();

}

else

$layers = 0;

with the following, which retrieves the selection from the run-time map state:
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// ---------------------------------------------------------

// Use the following code for AJAX Viewers only.

// This does not require passing selection data via HTTP POST.

//

$selection = new MgSelection($map);

$selection->Open($resourceService, $mapName);

$layers = $selection->GetLayers();

There is no need to create a JavaScript function to call this page using the
Submit() method of the formFrame. It can be run directly as a link from the
calling page, passing just the SESSION and MAPNAME.

Setting the Active Selection With the Web API

To set the run-time map selection using a query, perform the following steps:

■ Create a selection as described in Selecting with the Web API (page 39).
This creates a feature reader containing the selected features.

■ Create an MgSelection object to hold the features in the feature reader.

■ Send the selection to the Viewer, along with a call to the Viewer API
function SetSelectionXML().

Example: Setting the Active Selection

The following example combines the pieces needed to create a selection using
the Web API and pass it back to the Viewer where it becomes the active
selection for the map. It is an extension of the example shown in Example:
Selection (page 44).

The PHP code in this example creates the selection XML. Following that is a
JavaScript function that calls the SetSelectionXML() function with the
selection. This function is executed when the page loads.
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<body class="AppFrame" onLoad="OnPageLoad()">

 

  <h1 class="AppHeading">Select features</h1>

 

  <?php

  include '../common/common.php';

 

  $args = ($_SERVER['REQUEST_METHOD'] == "POST")? $_POST : $_GET;

  $sessionId = $args['SESSION'];

  $mapName = $args['MAPNAME'];

 

  try

  {

 

    // Initialize the Web Extensions and connect to the Server

    // using the Web Extensions session identifier

 

    MgInitializeWebTier ($webconfigFilePath);

 

    $userInfo = new MgUserInformation($sessionId);

    $siteConnection = new MgSiteConnection();

    $siteConnection->Open($userInfo);

 

    $map = new MgMap($siteConnection);

    $map->Open($mapName);

 

    // Get the geometry for the boundaries of District 1

 

    $districtQuery = new MgFeatureQueryOptions();

    $districtQuery->SetFilter("Autogenerated_SDF_ID = 1");

 

    $layer = $map->GetLayers()->GetItem('Districts');

    $featureReader = $layer->SelectFeatures($districtQuery);

    $featureReader->ReadNext();

    $districtGeometryData = $featureReader->

    GetGeometry('Data');

 

    // Convert the AGF binary data to MgGeometry.

 

    $agfReaderWriter = new MgAgfReaderWriter();

    $districtGeometry =

      $agfReaderWriter->Read($districtGeometryData);

 

Example: Setting the Active Selection | 55



// Create a filter to select the desired features. Combine

// a basic filter and a spatial filter.

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'SCHMITT%'");

$queryOptions->SetSpatialFilter('SHPGEOM', $districtGeometry,

MgFeatureSpatialOperations::Inside);

// Get the features from the feature source,

// turn it into a selection, then save the selection as XML.

$layer = $map->GetLayers()->GetItem('Parcels');

$featureReader = $layer->SelectFeatures($queryOptions);

$layer = $map->GetLayers()->GetItem('Parcels');

$selection = new MgSelection($map);

$selection->AddFeatures($layer, $featureReader, 0);

$selectionXml = $selection->ToXml();

echo 'Selecting parcels owned by Schmitt in District&nbsp;1';

}

catch (MgException $e)

{

echo $e->GetMessage();

echo $e->GetDetails();

}

?>

</body>

<script language="javascript">

// Emit this function and assocate it with the onLoad event

// for the page so that it gets executed when this page

// loads in the browser. The function calls the

// SetSelectionXML method on the Viewer Frame, which updates

// the current selection on the viewer and the server.

function OnPageLoad()

{

selectionXml = '<?php echo $selectionXml; ?>';

parent.parent.SetSelectionXML(selectionXml);
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}

</script>
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Introduction

TIP The Modifying Maps and Layers sample, in the Developer’s Guide samples,
demonstrates concepts from this chapter.

This chapter describes how to modify maps and layers.

Adding An Existing Layer To A Map
If the layer already exists in the resource repository, add it to the map by
getting the map’s layer collection and then adding the layer to that collection.

$layerCollection = $map->GetLayers();

$layerCollection->Add($layer);

By default, newly added layers are added to the bottom of the drawing order,
so they may be obscured by other layers. If you want to specify where the
layer appears in the drawing order, use the $layerCollection->Insert()
method. For an example, see Adding Layers To A Map (page 71).

NOTE In the MapGuide API, getting a collection returns a reference to the
collection. So adding the layer to the layer collection immediately updates the
map.

Creating Layers By Modifying XML
The easiest way to programmatically create new layers is to

1 Build a prototype layer through the Studio UI. To make the scripting
simpler, this layer should have as many of the correct settings as can be
determined in advance.

2 Use Studio’s Save as Xml command to save the layer as an XML file.

3 Have the script load the XML file and then use the DOM (Document
Object Model) to change the necessary XML elements.

4 Add the modified layer to the map.

The XML schema for layer definitions is defined by the
LayerDefinition-version.xsd schema, which is documented in the MapGuide
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Web API Reference. This schema closely parallels the UI in the Studio’s Layer
Editor, as described in the Studio Help.

This example

■ loads a layer that has been created through Studio

■ uses the DOM to change the filter and its associated legend label

You can use the DOM to modify any layers, including ones that already exist
in the map, not just new layers that you are adding to the map. You can also
use the DOM to modify other resources; the XML schemas are described in
the MapGuide Web API Reference.

Creating Layers By Modifying XML | 61



// (initialization etc. not shown here)

// Open the map

 $map = new MgMap();

 $map->Open($resourceService, $mapName);

 // --------------------------------------------------//

 // Load a layer from XML, and use the DOM to change it

 // Load the prototype layer definition into

 // a PHP DOM object.

 $domDocument =

   DOMDocument::load('RecentlyBuilt.LayerDefinition');

 if ($domDocument == NULL)

 {

     echo "The layer definition

       'RecentlyBuilt.LayerDefinition' could not be

       found.<BR>\n";

     return;

 }

 // Change the filter

 $xpath = new DOMXPath($domDocument);

 $query = '//AreaRule/Filter';

 // Get a list of all the <AreaRule><Filter> elements in

 // the XML.

 $nodes = $xpath->query($query);

 // Find the correct node and change it

 foreach ($nodes as $node )

 {

     if ($node->nodeValue == 'YRBUILT > 1950')

     {

         $node->nodeValue = 'YRBUILT > 1980';

     }

 }

 // Change the legend label

 $query = '//LegendLabel';

 // Get a list of all the <LegendLabel> elements in the

 // XML.

 $nodes = $xpath->query($query);

 // Find the correct node and change it

 foreach ($nodes as $node )

 {

     if ($node->nodeValue == 'Built after 1950')

     {

         $node->nodeValue = 'Built after 1980';

     }
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}

// ...

The page then goes on to save the XML to a resource and loads that resource
into the map, as described in Adding Layers To A Map (page 71).

If you wish to modify an existing layer that is visible in other users’ maps,
without affecting those maps:

1 Copy the layer to the user’s session repository.

2 Modify the layer and save it back to the session repository.

3 Change the user’s map to refer to the modified layer.

See Adding Layers To A Map (page 71).

Another Way To Create Layers
The method described in the previous section is easy to use, but requires a
layer definition be created first through the Studio UI. An alternative approach
is to use the methods defined in

WebServerExtensions\www\mapviewerphp\layerdefinitionfactory.php.

This file contains several functions, which can be used to build up a layer
definition. The parameters of these functions enable you to set the most
commonly used settings. (If you need to change other settings, you will have
to either use the Studio UI, or modify the XML of the layer definition.)

The layerdefinitionfactory is only available for PHP. For development using
ASP.NET, a good alternative is to use the Visual Studio tool xsd.exe to generate
.NET classes for the LayerDefinition schema.
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LayerDefinition

$featureClass
$resourceId

$geometry
$featureClassRange

AreaTypeStyle

$areaRules

LineTypeStyle

$lineRules

PointTypeStyle

$pointRule

AreaRule
$legendLabel
$filterText
$foreGroundColor

LineRule
$legendLabel
$filter
$color

PointRule
$legendLabel
$filter
$label
$pointSym

MarkSymbol

$height

$symbolName
$width

$resourceId

$color

TextSymbol

$foregroundColor
$fontHeight
$text

ScaleRange

$maxScale
$minScale

$typeStyle

DescriptionParameterFunction

The repository path of the feature source for
the layer. For example: Lib-

$resourceIdCreateLayerDefini-

tion()

rary://Samples/Sheboygan/Data/Par-

cels.FeatureSource. Equivalent to the
Data resource used in this layer field in Stu-
dio’s layer editor.
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DescriptionParameterFunction

The feature class to use. For example,
SHP_Schema:Parcels. Equivalent to the
Feature class field in Studio’s layer editor.

$featureClass

The geometry to use from the feature class.
For example, SHPGEOM. Equivalent to the
Geometry field in Studio’s layer editor.

$geometry

A scale range created by filling in a scale
range template (ScaleRange.templ).

$feature-

ClassRange

The minimum scale range to which this rule
applies. Equivalent to the From field in Stu-
dio’s layer editor.

$minScaleCreateScaleRange()

The maximum scale range to which this rule
applies. Equivalent to the To field in Studio’s
layer editor.

$maxScale

A type style created by using Cre-
ateAreaTypeStyle(), CreateLineType-
Style() or CreatePointTypeStyle().

$typeStyle

One or more area rules, created by Cre-
ateAreaRule.

$areaRulesCreateAreaTypeStyle()

The text for the label shown beside this rule
in the legend. Equivalent to the Legend Label
field in Studio’s layer editor.

$legendLabelCreateAreaRule()

The filter expression that determines which
features match this rule. For example, SQFT

$filterText

&gt;= 1 AND SQFT &lt; 800. Equivalent
to the Condition field in Studio’s layer editor.
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DescriptionParameterFunction

The color to be applied to areas that match
this rule. Equivalent to the Foreground color
field in Studio’s layer editor.

$foreGroundColor

The string for the text.$textCreateTextSymbol()

The height for the font.$fontHeight

The foreground color.$foregroundColor

One or more point rules, created by Create-
PointRule().

$pointRuleCreatePointTypeStyle()

The label shown beside this rule in the le-
gend. Equivalent to the Legend label field in
Studio’s layer editor.

$legendLabelCreatePointRule()

The filter expression that determines which
features match this rule. Equivalent to the
Condition field in Studio’s layer editor.

$filter

The text symbol, created by CreateTextSym-
bol().

$label

A mark symbol created by CreateMarkSym-
bol().

$pointSym

The resource ID of the symbol used to mark
each point. For example, lib-

$resourceIdCreateMarkSymbol()

rary://Samples/Sheboygan/Sym-

bols/BasicSymbols.SymbolLibrary.
Equivalent to the Location field in the Select
a symbol from a Symbol Library dialog in
Studio’s layer editor.

The name of the desired symbol in the sym-
bol library.

$symbolName
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DescriptionParameterFunction

The width of the symbol (in points). Equival-
ent to the Width field in the Style Point dialog
in Studio’s layer editor.

$width

The height of the symbol (in points). Equival-
ent to the Height field in the Style Point dia-
log in Studio’s layer editor.

$height

The color for the symbol. Equivalent to the
Foreground color field in the Style Point dia-
log in Studio’s layer editor.

$color

One or more line rules, created by Cre-
ateLineRule().

$lineRulesCreateLineTypeStyle()

The color to be applied to lines that match
this rule. Equivalent to the Color field in Stu-
dio’s layer editor.

$colorCreateLineRule()

The label shown beside this rule in the le-
gend. Equivalent to the Legend Label field in
Studio’s layer editor.

$legendLabel

The filter expression that determines which
features match this rule. Equivalent to the
Condition field in Studio’s layer editor.

$filter

For more information on these settings, see the Studio Help.

Example - Creating A Layer That Uses Area Rules

This example shows how to create a new layer using the factory. This layer
uses three area rules to theme parcels by their square footage.
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// ...

 /---------------------------------------------------//

 $factory = new LayerDefinitionFactory();

/// Create three area rules for three different

// scale ranges.

$areaRule1 = $factory->CreateAreaRule( '1 to 800',

'SQFT &gt;= 1 AND SQFT &lt; 800', 'FFFFFF00');

$areaRule2 = $factory->CreateAreaRule( '800 to 1600',

'SQFT &gt;= 800 AND SQFT &lt; 1600', 'FFFFBF20');

$areaRule3 = $factory->CreateAreaRule('1600 to 2400',

'SQFT &gt;= 1600 AND SQFT &lt; 2400', 'FFFF8040');

// Create an area type style.

$areaTypeStyle = $factory->CreateAreaTypeStyle(

$areaRule1 . $areaRule2 . $areaRule3);

// Create a scale range.

$minScale = '0';

$maxScale = '1000000000000';

$areaScaleRange = $factory->CreateScaleRange(

$minScale, $maxScale, $areaTypeStyle);

// Create the layer definiton.

$featureClass = 'Library://Samples/Sheboygan/Data/'

. 'Parcels.FeatureSource';

$featureName = 'SHP_Schema:Parcels';

$geometry = 'SHPGEOM';

$layerDefinition = $factory->CreateLayerDefinition(

$featureClass, $featureName, $geometry,

$areaScaleRange);

//---------------------------------------------------//

// ...

The script then saves the XML to a resource and loads that resource into the
map. See Adding Layers To A Map (page 71).

Example - Using Line Rules

Creating line-based rules is very similar.
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    // ...

    //---------------------------------------------------//

$factory = new LayerDefinitionFactory();

// Create a line rule.

$legendLabel = '';

$filter = '';

$color = 'FF0000FF';

$lineRule = $factory->CreateLineRule(

$legendLabel, $filter, $color);

// Create a line type style.

$lineTypeStyle = $factory->

CreateLineTypeStyle($lineRule);

// Create a scale range.

$minScale = '0';

$maxScale = '1000000000000';

$lineScaleRange = $factory->

CreateScaleRange($minScale, $maxScale,

$lineTypeStyle);

// Create the layer definiton.

$featureClass = 'Library://Samples/Sheboygan/Data/'

. 'HydrographicLines.FeatureSource';

$featureName = 'SHP_Schema:HydrographicLines';

$geometry = 'SHPGEOM';

$layerDefinition = $factory->

CreateLayerDefinition($featureClass, $featureName,

$geometry, $lineScaleRange);

//---------------------------------------------------//

// ...

Example - Using Point Rules

To create point-based rules, three methods are used.
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    // ...

    //---------------------------------------------------//

    $factory = new LayerDefinitionFactory();

    // Create a mark symbol

    $resourceId =

'Library://Samples/Sheboygan/Symbols/BasicSymbols.SymbolLibrary';

    $symbolName = 'PushPin';

    $width = '24'; // points

    $height = '24'; // points

    $color = 'FFFF0000';

    $markSymbol = $factory->CreateMarkSymbol($resourceId,

      $symbolName, $width, $height, $color);

   

    // Create a text symbol

    $text = "ID";

    $fontHeight="12";

    $foregroundColor = 'FF000000';

    $textSymbol = $factory->CreateTextSymbol($text,

      $fontHeight, $foregroundColor);

    // Create a point rule.

    $legendLabel = 'trees';

    $filter = '';

    $pointRule = $factory->CreatePointRule($legendLabel,

      $filter, $textSymbol, $markSymbol);

     

    // Create a point type style.

    $pointTypeStyle = $factory->

      CreatepointTypeStyle($pointRule);

     

    // Create a scale range.

    $minScale = '0';

    $maxScale = '1000000000000';

    $pointScaleRange = $factory->CreateScaleRange($minScale,

      $maxScale, $pointTypeStyle);

    // Create the layer definiton.

    $featureClass = 'Library://Tests/Trees.FeatureSource';

    $featureName = 'Default:Trees';

    $geometry = 'Geometry';

    $layerDefinition = $factory->

      CreateLayerDefinition($featureClass, $featureName,

      $geometry, $pointScaleRange);

    //---------------------------------------------------//
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// ...

Adding Layers To A Map
The preceding examples have created or modified the XML for layer definitions
in memory. To add those layers to a map:

1 Save the layer definition to a resource stored in the session repository.

2 Add that resource to the map.

This function adds takes a layer’s XML, creates a resource in the session
repository from it, and adds that layer resource to a map.
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<?php

require_once('../common/common.php');

///////////////////////////////////////////////////////////

function add_layer_definition_to_map($layerDefinition,

  $layerName, $layerLegendLabel, $mgSessionId,

  $resourceService, &$map)

// Adds the layer definition (XML) to the map.

// Returns the layer.

{

    // Validate the XML.

    $domDocument = new DOMDocument;

    $domDocument->loadXML($layerDefinition);

    if (! $domDocument->schemaValidate(

       "$schemaDirectory\LayerDefinition-1.1.0.xsd") )

    {

        echo "ERROR: The new XML document is invalid.

          <BR>\n.";

        return NULL;

    }

    // Save the new layer definition to the session

    // repository

    $byteSource = new MgByteSource($layerDefinition,

      strlen($layerDefinition));

    $byteSource->SetMimeType(MgMimeType::Xml);

    $resourceID = new MgResourceIdentifier(

       "Session:$mgSessionId//$layerName.LayerDefinition");

    $resourceService->SetResource($resourceID,

$byteSource->GetReader(), null);

$newLayer = add_layer_resource_to_map($resourceID,

$resourceService, $layerName, $layerLegendLabel,

$map);

return $newLayer;

}

This function adds a layer resource to a map.

72 | Chapter 5   Modifying Maps and Layers



function add_layer_resource_to_map($layerResourceID,

  $resourceService, $layerName, $layerLegendLabel, &$map)

// Adds a layer defition (which can be stored either in the

// Library or a session repository) to the map.

// Returns the layer.

{

    $newLayer = new MgLayer($layerResourceID,

$resourceService);

// Add the new layer to the map's layer collection

$newLayer->SetName($layerName);

$newLayer->SetVisible(true);

$newLayer->SetLegendLabel($layerLegendLabel);

$newLayer->SetDisplayInLegend(true);

$layerCollection = $map->GetLayers();

if (! $layerCollection->Contains($layerName) )

{

// Insert the new layer at position 0 so it is at

// the top of the drawing order

$layerCollection->Insert(0, $newLayer);

}

return $newLayer;

}

This function adds a layer to a legend’s layer group.
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function add_layer_to_group($layer, $layerGroupName,

  $layerGroupLegendLabel, &$map)

// Adds a layer to a layer group. If necessary, it creates

// the layer group.

{

    // Get the layer group

    $layerGroupCollection = $map->GetLayerGroups();

    if ($layerGroupCollection->Contains($layerGroupName))

    {

        $layerGroup =

          $layerGroupCollection->GetItem($layerGroupName);

    }

    else

    {

        // It does not exist, so create it

        $layerGroup = new MgLayerGroup($layerGroupName);

        $layerGroup->SetVisible(true);

        $layerGroup->SetDisplayInLegend(true);

      

$layerGroup->SetLegendLabel($layerGroupLegendLabel);

$layerGroupCollection->Add($layerGroup);

}

// Add the layer to the group

$layer->SetGroup($layerGroup);

}

Making Changes Permanent
So far, all the examples in this chapter have only affected the user’s runtime
version of the map. No other users see those changes, and when the current
user logs out those changes will be lost.

To make changes permanent, the script can save the modified layer back into
the Library.

$byteSource = new MgByteSource($layerDefinition, strlen($layerDefin

ition));

$byteSource->SetMimeType(MgMimeType::Xml);

$resourceId =

new MgResourceIdentifier("Library://LayerName.LayerDefinition");

$resourceService->SetResource(

$resourceId, $byteSource->GetReader(), null);

74 | Chapter 5   Modifying Maps and Layers



Analyzing Features

In this chapter

■ Introduction

■ Representation of
Geometry

■ Coordinate Systems

■ Measuring Distance

■ Temporary Feature
Sources

■ Creating a Buffer

■ Example

6

75



Introduction

TIP The Analyzing Features sample, in the Developer’s Guide samples,
demonstrates concepts from this chapter.

MapGuide includes methods for analyzing map features, including comparing
the spatial relationships between features, measuring distances, and creating
buffer areas around features.

Analyzing features requires knowing how the features are represented and
what spatial reference systems are being used. If different spatial reference
systems are being used, it is important to be able to convert between them.

Representation of Geometry
MapGuide can represent geometric data in three different forms:

■ AGF text format, which is an extension of the Open Geospatial Consortium
(OGC) Well Known Text (WKT) format. This is used to represent geometry
as a character string.

■ Binary AGF format. This is used by the FDO technology supporting the
Feature Service.

■ MapGuide internal representation, using MgGeometry and classes derived
from it.

NOTE This guide and the Web API Reference will often use the term WKT to mean
AGF text format. Be aware that AGF Text values do not always conform to the
OGC WKT standard. See the Geometry module in the Web API Reference for
details.

To convert between AGF text and the MapGuide internal representation, use
an MgWktReaderWriter object. Call MgWktReaderWriter.Read() to convert AGF
text to MgGeometry. Call MgWktReaderWriter.Write() to convert MgGeometry
to AGF text.

To convert between binary AGF and the MapGuide internal representation,
use an MgAgfReaderWriter object. Call MgAgfReaderWriter.Read() to convert
binary AGF to MgGeometry. Call MgAgfReaderWriter.Write() to convert
MgGeometry to binary AGF.
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For example, if you have a WKT representation of the geometry, you could
create a geometry object as follows:

MgWktReaderWriter wktReaderWriter = new MgWktReaderWriter();

MgGeometry geometry = wktReaderWriter.Read(wktGeometry);

Geometry Objects

MgGeometry is the base class for all the geometry types. The simple geometry
types are:

■ MgPoint — a single point

■ MgLineString — a series of connected line segments

■ MgCurveString — a series of connected curve segments

■ MgPolygon — a polygon with sides formed from line segments

■ MgCurvePolygon — a polygon with sides formed from curve segments

The curve segments are circular arcs, defined by a start point, an end point,
and a control point.

Complex types are formed by aggregating simple types. The complex types
are:

■ MgMultiPoint — a group of points

■ MgMultiLineString — a group of line strings

■ MgMultiCurveString — a group of curve strings

■ MgMultiPolygon — a group of polygons

■ MgMultiCurvePolygon — a group of curve polygons

■ MgMultiGeometry — a group of simple geometry objects of any type
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Comparing Geometry Objects

The MgGeometry class contains methods for comparing different geometry
objects. These are similar to the spatial filters described in Selecting with the
Web API (page 39). Methods to test spatial relationships include:

■ Contains()

■ Crosses()

■ Disjoint()

■ Equals()

■ Intersects()

■ Overlaps()

■ Touches()

■ Within()

For example, if you have an MgLineString object $line and an MgPolygon
object $polygon, you can test if the line crosses the polygon with a call to

$line->Crosses($polygon)

Methods to create new geometry objects from the point set of two other
geometries include:

■ Difference()

■ Intersection()

■ SymmetricDifference()

■ Union()

Complete details are in the Geometry module of the Web API reference, under
Spatial Relationships.

Coordinate Systems
A single map will often combine data from different sources, and the different
sources may use different coordinate systems. The map has its own coordinate
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system, and any feature sources used in the map may have different coordinate
systems. It is important for display and analysis that all locations are
transformed to the same coordinate system.

NOTE A coordinate system can also be called a spatial reference system (SRS) or
a coordinate reference system (CRS). This guide uses the abbreviation SRS.

MapGuide supports three different types of coordinate system:

■ Arbitrary X-Y

■ Geographic, or latitude/longitude

■ Projected

An MgCoordinateSystem object represents a coordinate system.

NOTE You cannot transform between arbitrary X-Y coordinates and either
geographic or projected coordinates.

To create an MgCoordinateSystem object from an MgMap object,

■ Get the WKT representation of the map coordinate system, using
MgMap::GetMapSRS().

■ Create an MgCoordinateSystem object, using
MgCoordinateSystemFactory::Create().

To create an MgCoordinateSystem object from a map layer,

■ Get the feature source for the layer.

■ Get the active spatial context for the feature source.

■ Convert the spatial context to a WKT.

■ Create an MgCoordinateSystem object from the WKT.

To transform geometry from one coordinate system to another, create an
MgCoordinateSystemTransform object using the two coordinate systems. Apply
this transform to the MgGeometry object.

For example, if you have geometry representing a feature on a layer that uses
one coordinate system, and you want to compare it to a feature on another
layer that uses a different coordinate system, perform the following steps:
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$featureSource1 = $layer1->GetFeatureSourceId();

$contexts1 = $featureService->GetSpatialContexts(

$featureSource1, true);

$contexts1->ReadNext();

$srs1 = $contexts1->GetCoordinateSystemWkt();

$featureSource2 = $layer2->GetFeatureSourceId();

$contexts2 = $featureService->GetSpatialContexts(

$featureSource2, true);

$contexts2->ReadNext();

$srs2 = $contexts2->GetCoordinateSystemWkt();

$xform = new MgCoordinateSystemTransform($srs1, $srs2);

$geometry1xform->$geometry1->Transform($xform);

Measuring Distance
Measuring distance in geographic or projected coordinate systems requires
great circle calculations. Both MgGeometry::Buffer() and
MgGeometry::Distance() accept a measurement parameter that defines the
great circle to be used. If the measurement parameter is null, the calculation
is done using a linear algorithm.

Create the measurement parameter, an MgCoordinateSystemMeasure object,
from the MgCoordinateSystem object.

Distance is calculated in the units of the SRS. MgCoordinateSystem includes
two methods, ConvertCoordinateSystemUnitsToMeters() and
ConvertMetersToCoordinateSystemUnits() to convert to and from linear
distances.

For example, to calculate the distance between two MgGeometry objects $a and
$b, using the coordinate system $srs, perform the following steps:

$measure = new MgCoordinateSystemMeasure($srs);

$distInMapUnits = $a->Distance($b, $measure);

$distInMeters = $srs->ConvertCoordinateSystemUnitsToMeters(

$distInMapUnits);

Another way to calculate the distance is to use
MgCoordinateSystemMeasure::GetDistance(), as in the following:

$distInMapUnits = $measure->GetDistance($a, $b);
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Temporary Feature Sources
Many geometric analysis operations require creating new features and new
feature sources. For example, drawing a buffer around a point on a map requires
a layer to display the buffer polygon, and the layer requires a feature source.

To create a temporary feature source, perform the following steps:

■ Create a feature class definition.

■ Determine what properties you need to store for the features. Add the
property definitions to the feature class definition.

■ Create a feature schema containing the feature class definition.

■ Determine the SRS for the feature source. This can be the same as the SRS
used for the map.

■ Create a feature source using the schema and the SRS. The feature source
can be stored in the session repository.

It is possible for a single feature source to contain more than one feature class.
A feature source that is to be used for temporary data, however, normally
contains one feature class.

A feature schema (MgFeatureSchema object) contains class definitions
(MgClassDefinition objects) for each feature class in the schema.

Each class definition contains property definitions for each property in the
feature class. The property definitions can be the following types:

■ MgDataPropertyDefinition

■ MgGeometryPropertyDefinition

■ MgObjectPropertyDefinition

■ MgRasterPropertyDefinition

MgDataPropertyDefinition is used to define simple properties like numbers
or strings. MgGeometryPropertyDefinition is used to define geometric
properties. Most feature classes will have a geometric property to describe the
feature’s location.

For example, the following creates a temporary feature source to hold buffer
features. The feature source contains a single feature class named BufferClass.
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Features in BufferClass have two properties. ID is an autogenerated unique
ID number, and BufferGeometry contains the geometry for the buffer polygon.

The FDO technology supporting the Feature Service allows for multiple spatial
reference systems within a single feature source. However, this capability is
dependent on the data provider, and does not apply to the SDF provider that
is used for creating feature sources within MapGuide. For temporary feature
sources, you must define a single default SRS for the feature source, and you
must set any geometry properties to use the same SRS. The name of the SRS
is user-defined.
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$bufferClass = new MgClassDefinition();

$bufferClass->SetName('BufferClass');

$properties = $bufferClass->GetProperties();

 

$idProperty = new MgDataPropertyDefinition('ID');

$idProperty->SetDataType(MgPropertyType::Int32);

$idProperty->SetReadOnly(true);

$idProperty->SetNullable(false);

$idProperty->SetAutoGeneration(true);

$properties->Add($idProperty);

 

$polygonProperty = new

   MgGeometricPropertyDefinition('BufferGeometry');

$polygonProperty->

   SetGeometryTypes(MgFeatureGeometricType::Surface);

$polygonProperty->SetHasElevation(false);

$polygonProperty->SetHasMeasure(false);

$polygonProperty->SetReadOnly(false);

$polygonProperty->SetSpatialContextAssociation('defaultSrs');

$properties->Add($polygonProperty);

 

$idProperties = $bufferClass->GetIdentityProperties();

$idProperties->Add($idProperty);

 

$bufferClass->SetDefaultGeometryPropertyName('BufferGeometry');

 

$bufferSchema = new MgFeatureSchema('BufferLayerSchema',

   'temporary schema to hold a buffer');

$bufferSchema->GetClasses()->Add($bufferClass);

 

$sdfParams = new MgCreateSdfParams('defaultSrs', $wkt,

   $bufferSchema);

 

$featureService->CreateFeatureSource($bufferFeatureResId,

$sdfParams);

To display features from a temporary feature source in a map, create a layer
definition that refers to the feature source. Use the techniques described in
Modifying Maps and Layers (page 59).
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Inserting, Deleting, and Updating Features

To change data in a feature source, create an MgFeatureCommandCollection
object. This can contain commands to insert, delete, or update features in an
FDO data source. The commands are executed sequentially. For FDO providers
that support transaction processing, the commands can be treated as a single
transaction.

Feature commands can be one of the following:

■ MgDeleteFeatures

■ MgInsertFeatures

■ MgUpdateFeatures

To execute the commands, call MgFeatureService::UpdateFeatures(). The
feature class name and property names in any of the feature commands must
match the class name and property names in the feature source.

For example, to delete all features in a feature class with an identity property
ID, execute the following:

$commands = new MgFeatureCommandCollection();

$deleteCommand = new MgDeleteFeatures($className, "ID like '%'");

$commands->Add($deleteCommand);

$featureService->UpdateFeatures($featureSource, $commands, false);

To insert features, create an MgPropertyCollection object that contains the
properties of the new feature. Create an MgInsertFeatures object and add
this to the MgFeatureCommandCollection object.

For example, to add a new feature with a single geometry property, execute
the following:
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$commands = new MgFeatureCommandCollection();

$properties = new MgPropertyCollection();

$agfByteStream = $agfReaderWriter->Write($geometry);

$geometryProperty = new MgGeometryProperty($propertyName,

   $agfByteStream);

$properties->Add($geometryProperty);

 

$insertCommand = new MgInsertFeatures($className, $properties);

$commands->Add($insertCommand);

 

$featureService->UpdateFeatures($featureSource, $commands, false);

To update existing features, create an MgPropertyCollection object that
contains the new values for the properties and a filter expression that selects
the correct feature or features. See Querying Feature Data (page 39) for details
about filter expressions.

Creating a Buffer
To create a buffer around a feature, use the MgGeometry::Buffer() method.
This returns an MgGeometry object that you can use for further analysis. For
example, you could display the buffer by creating a feature in a temporary
feature source and adding a new layer to the map. You could also use the
buffer geometry as part of a spatial filter. For example, you might want to find
all the features within the buffer zone that match certain criteria, or you might
want to find all roads that cross the buffer zone.

To create a buffer, get the geometry of the feature to be buffered. If the feature
is being processed in an MgFeatureReader as part of a selection, this requires
getting the geometry data from the feature reader and converting it to an
MgGeometry object. For example:

$geometryData =

$featureReader->GetGeometry($geometryName);

$featureGeometry = $agfReaderWriter->Read($geometryData);

If the buffer is to be calculated using coordinate system units, create an
MgCoordinateSystemMeasure object from the coordinate system for the map.
For example:
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$mapWktSrs = $currentMap->GetMapSRS();

$coordSysFactory =

  new MgCoordinateSystemFactory();

$srs = $coordSysFactory->Create($mapWktSrs);

$srsMeasure =

new MgCoordinateSystemMeasure($srs);

Use the coordinate system measure to determine the buffer size in the
coordinate system, and create the buffer object from the geometry to be
buffered.

$srsDist =

$srs->ConvertMetersToCoordinateSystemUnits($bufferDist);

$bufferGeometry =

$featureGeometry->Buffer($srsDist, $srsMeasure);

To display the buffer in the map, perform the following steps:

■ Create a feature source for the buffer.

■ Insert a buffer feature in the feature source.

■ Create a layer that references the feature source.

■ Add the layer to the map and make it visible.

To use the buffer as part of a query, create a spatial filter using the buffer
geometry, and use this in a call to MgFeatureService::SelectFeatures(). For
example, the following code selects parcels inside the buffer area that are of
type “MFG”. You can use the MgFeatureReader to perform tasks like generating
a report of the parcels, or creating a new layer that puts point markers on each
parcel.

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RTYPE = 'MFG'");

$queryOptions->SetSpatialFilter('SHPGEOM', $bufferGeometry,

MgFeatureSpatialOperations::Inside);

$featureResId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Data/Parcels.FeatureSource");

$featureReader = $featureService->SelectFeatures($featureResId,

"Parcels", $queryOptions);
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Example
This example builds on the example from Working With the Active Selection
(page 49). Instead of listing the parcels in the selection, it creates a series of
concentric buffers around the selection, showing increasing distance. The
code sections below contain the significant additions in this example. The
complete source code is available with the Developer’s Guide samples.

Because this example modifies the map, it must refresh the map when it loads,
by executing a JavaScript function. Add the function to the page.

<script language="javascript">

function OnPageLoad()

{

parent.parent.Refresh();

}

</script>

Add an OnLoad command to the <body> element:

<body onLoad="OnPageLoad()">

The example uses a temporary map layer named Buffer to store the buffer
feature. It creates a feature source and the layer if it does not exist. Otherwise,
it deletes any existing features before creating the new buffer. The functions
CreateBufferFeatureSource() and CreateBufferLayer() are in
bufferfunctions.php, which is described below.
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include 'bufferfunctions.php';

$bufferRingSize = 100; // measured in metres

$bufferRingCount = 5;

 

// Set up some objects for coordinate conversion

 

$mapWktSrs = $map->GetMapSRS();

$agfReaderWriter = new MgAgfReaderWriter();

$wktReaderWriter = new MgWktReaderWriter();

$coordinateSystemFactory = new MgCoordinateSystemFactory();

$srs = $coordinateSystemFactory->Create($mapWktSrs);

$srsMeasure = new MgCoordinateSystemMeasure($srs);

 

// Check for a buffer layer. If it exists, delete

// the current features.

// If it does not exist, create a feature source and

// a layer to hold the buffer.

 

try

{

  $bufferLayer = $map->GetLayers()->GetItem('Buffer');

  $bufferFeatureResId = new MgResourceIdentifier(

    $bufferLayer->GetFeatureSourceId());

 

  $commands = new MgFeatureCommandCollection();

  $commands->Add(new MgDeleteFeatures('BufferClass',

    "ID like '%'"));

 

  $featureService->UpdateFeatures($bufferFeatureResId,

    $commands, false);

}

catch (MgObjectNotFoundException $e)

{

  // When an MgObjectNotFoundException is thrown, the layer

  // does not exist and must be created.

 

  $bufferFeatureResId = new MgResourceIdentifier("Session:" .

    $mgSessionId . "//Buffer.FeatureSource");

  CreateBufferFeatureSource($featureService, $mapWktSrs,

    $bufferFeatureResId);

  $bufferLayer = CreateBufferLayer($resourceService,

    $bufferFeatureResId, $mgSessionId);

  $map->GetLayers()->Insert(0, $bufferLayer);
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}

The geometries for the selected features are merged into a single
multi-geometry. Then a series of concentric buffers is created and added to
the feature source. The style for the layer, which is set when function
CreateBufferLayer() processes bufferlayerdefinition.xml, should define the
buffer features to be partly transparent. When they are drawn on the map,
the rings get progressively darker towards the center of the buffer area.
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// Process each item in the MgFeatureReader.

// Merge them into a single feature.

 

$inputGeometries = new MgGeometryCollection();

while ($featureReader->ReadNext())

{

  $featureGeometryData = $featureReader->GetGeometry('SHPGEOM');

  $featureGeometry = $agfReaderWriter->Read($featureGeometryData);

 

  $inputGeometries->Add($featureGeometry);

}

 

$geometryFactory = new MgGeometryFactory();

$mergedFeatures = $geometryFactory->

  CreateMultiGeometry($inputGeometries);

 

// Add buffer features to the temporary feature source.

// Create multiple concentric buffers to show area.

 

$commands = new MgFeatureCommandCollection();

for ($bufferRing = 0; $bufferRing < $bufferRingCount;

    $bufferRing++)

{

  $bufferDist = $srs->

    ConvertMetersToCoordinateSystemUnits($bufferRingSize *

    ($bufferRing + 1));

  $bufferGeometry = $mergedFeatures->Buffer($bufferDist,

    $srsMeasure);

 

  $properties = new MgPropertyCollection();

  $properties->Add(new MgGeometryProperty('BufferGeometry',

    $agfReaderWriter->Write($bufferGeometry)));

 

  $commands->Add(new MgInsertFeatures('BufferClass',

    $properties));

}

 

$results = $featureService->UpdateFeatures($bufferFeatureResId,

    $commands, false);

 

$bufferLayer->SetVisible(true);

$bufferLayer->ForceRefresh();

$bufferLayer->SetDisplayInLegend(true);
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$map->Save($resourceService);

The functions CreateBufferFeatureSource() and CreateBufferLayer() are
in bufferfunctions.php. CreateBufferFeatureSource() creates a temporary
feature source, with a single feature class, BufferClass. The feature class has
two properties, ID and BufferGeometry. ID is autogenerated, so it does not
need to be added with a new feature. CreateBufferLayer() modifies a layer
definition from an external file and saves it to the repository. For more details,
see Modifying Maps and Layers (page 59).
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function CreateBufferFeatureSource($featureService, $wkt,

  $bufferFeatureResId)

{

   $bufferClass = new MgClassDefinition();

   $bufferClass->SetName('BufferClass');

   $properties = $bufferClass->GetProperties();

   $idProperty = new MgDataPropertyDefinition('ID');

   $idProperty->SetDataType(MgPropertyType::Int32);

   $idProperty->SetReadOnly(true);

   $idProperty->SetNullable(false);

   $idProperty->SetAutoGeneration(true);

   $properties->Add($idProperty);

   $polygonProperty = new

     MgGeometricPropertyDefinition('BufferGeometry');

   $polygonProperty->

     SetGeometryTypes(MgFeatureGeometricType::Surface);

   $polygonProperty->SetHasElevation(false);

   $polygonProperty->SetHasMeasure(false);

   $polygonProperty->SetReadOnly(false);

   $polygonProperty->SetSpatialContextAssociation('defaultSrs');

   $properties->Add($polygonProperty);

   $idProperties = $bufferClass->GetIdentityProperties();

   $idProperties->Add($idProperty);

   $bufferClass->

     SetDefaultGeometryPropertyName('BufferGeometry');

   $bufferSchema = new MgFeatureSchema('BufferLayerSchema',

     'temporary schema to hold a buffer');

   $bufferSchema->GetClasses()->Add($bufferClass);

   $sdfParams = new MgCreateSdfParams('defaultSrs', $wkt,

     $bufferSchema);

   $featureService->CreateFeatureSource($bufferFeatureResId,

      $sdfParams);

}

 

function CreateBufferLayer($resourceService,

  $bufferFeatureResId, $sessionId)

{

   // Load the layer definition template into

   // a PHP DOM object, find the "ResourceId" element, and

   // modify its content to reference the temporary

   // feature source.

   $doc = DOMDocument::load('bufferlayerdefinition.xml');

   $featureSourceNode = $doc->getElementsByTagName(
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'ResourceId')->item(0);

$featureSourceNode->nodeValue =

$bufferFeatureResId->ToString();

// Get the updated layer definition from the DOM object

// and save it to the session repository using the

// ResourceService object.

$layerDefinition = $doc->saveXML();

$byteSource = new MgByteSource($layerDefinition,

strlen($layerDefinition));

$byteSource->SetMimeType(MgMimeType::Xml);

$tempLayerResId = new MgResourceIdentifier("Session:" .

$sessionId . "//Buffer.LayerDefinition");

$resourceService->SetResource($tempLayerResId,

$byteSource->GetReader(), null);

// Create an MgLayer object based on the new layer definition

// and return it to the caller.

$bufferLayer = new MgLayer($tempLayerResId, $resourceService);

$bufferLayer->SetName("Buffer");

$bufferLayer->SetLegendLabel("Buffer");

$bufferLayer->SetDisplayInLegend(true);

$bufferLayer->SetSelectable(false);

return $bufferLayer;

}

There is an additional example in the Developer’s Guide samples. It queries
the parcels in the buffer area and selects parcels that match certain criteria.
The selection is done using a query that combines a basic filter and a spatial
filter.

$bufferDist = $srs->

ConvertMetersToCoordinateSystemUnits($bufferRingSize);

$bufferGeometry = $mergedGeometries->Buffer($bufferDist,

$srsMeasure);

// Create a filter to select parcels within the buffer. Combine

// a basic filter and a spatial filter to select all parcels

// within the buffer that are of type "MFG".

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RTYPE = 'MFG'");

$queryOptions->SetSpatialFilter('SHPGEOM', $bufferGeometry,

MgFeatureSpatialOperations::Inside);

It creates an additional feature source that contains point markers for each of
the selected parcels.
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// Get the features from the feature source,

// determine the centroid of each selected feature, and

// add a point to the ParcelMarker layer to mark the

// centroid.

// Collect all the points into an MgFeatureCommandCollection,

// so they can all be added in one operation.

$featureResId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Data/Parcels.FeatureSource");

$featureReader = $featureService->SelectFeatures($featureResId,

"Parcels", $queryOptions);

$parcelMarkerCommands = new MgFeatureCommandCollection();

while ($featureReader->ReadNext())

{

$byteReader = $featureReader->GetGeometry('SHPGEOM');

$geometry = $agfReaderWriter->Read($byteReader);

$point = $geometry->GetCentroid();

// Create an insert command for this parcel.

$properties = new MgPropertyCollection();

$properties->Add(new MgGeometryProperty('ParcelLocation',

$agfReaderWriter->Write($point)));

$parcelMarkerCommands->Add(

new MgInsertFeatures('ParcelMarkerClass', $properties));

}

$featureReader->Close();

if ($parcelMarkerCommands->GetCount() > 0)

{

$featureService->UpdateFeatures($parcelFeatureResId,

$parcelMarkerCommands, false);

}

else

{

echo '</p><p>No parcels within the buffer area match.';

}
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Digitizing and Redlining

In this chapter

■ Introduction

■ Digitizing

■ Redlining
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Introduction

TIP The Digitizing and Redlining sample, in the Developer’s Guide samples,
demonstrates concepts from this chapter.

This chapter describes digitizing (capturing the user’s clicks on the map and
converting the locations to map coordinates) and redlining (drawing items
such as lines or rectangles on the map in response to the user’s clicks).

Digitizing
The Viewer API has a number of functions for digitizing user input. For an
example of how these can be used, see task_pane_digitizing.php in the
digitizing_features directory in the Developer Guide samples.

In this example, if the user clicks the button to digitize a point

<input type="button" value=" Point " onclick="DigitizePoint();">

the script calls the JavaScript function

function DigitizePoint() {

parent.parent.mapFrame.DigitizePoint(OnPointDigitized);

}

which in turn calls the DigitzePoint() method of the Viewer API in the map
frame. It also passes the name of a callback function, OnPointDigitized, which
is defined in the current script. DigizitzePoint() calls this function after it
has digitized the point and passes it the digitized coordinates of the point.

You can use this callback function to process the digitized coordinates as you
wish. In this example, the script simply displays them in the task pane.

function OnPointDigitized(point) {

ShowResults("X: " + point.X + ", Y: " + point.Y);

}

Redlining
There are three main steps involved in redlining:

1 Pass the digitized coordinates from the client to the server.
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2 Create a temporary feature source. This will be used to draw the lines on.

3 Create a layer to display that temporary feature source.

For example, see task_pane_redlining.php in the digitizing_features
directory in the Developer Guide samples.

Passing Coordinates

The digitizing functions in the Viewer API provide us with the digitized
coordinates on the client, but we usually need to pass them to a server side
script. This can be done with the Viewer API, using the Submit() method of
the formFrame.

function OnLineDigitized(line) {

// Send the Javascript variables to 'draw_line.php',

// via the form frame

var params = new Array("x0", line.Point(0).X,

"y0", line.Point(0).Y,

"x1", line.Point(1).X,

"y1", line.Point(1).Y,

"SESSION", "<?= $sessionId ?>",

"MAPNAME", "<?= $mapName ?>");

parent.parent.formFrame.Submit(

"/mapguide/samplesphp/digitizing_features/draw_line.php",

params, "scriptFrame");

}

This submits the coordinates to the server-side function to draw the line. It
uses the hidden scriptFrame so the page output is not visible.

Creating a Feature Source

The next step is create a feature source

See draw_line.php in the digitizing_features directory in the Developer
Guide samples.
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// Create a temporary feature source to draw the lines on

 

// Create a feature class definition for the new feature

// source

$classDefinition = new MgClassDefinition();

$classDefinition->SetName("Lines");

$classDefinition->SetDescription("Lines to display.");

$geometryPropertyName="SHPGEOM";

$classDefinition->

    SetDefaultGeometryPropertyName( $geometryPropertyName);

   

// Create an identify property

$identityProperty = new MgDataPropertyDefinition("KEY");

$identityProperty->SetDataType(MgPropertyType::Int32);

$identityProperty->SetAutoGeneration(true);

$identityProperty->SetReadOnly(true);

// Add the identity property to the class definition

$classDefinition->GetIdentityProperties()->

    Add($identityProperty);

$classDefinition->GetProperties()->Add($identityProperty);

   

// Create a name property

$nameProperty = new MgDataPropertyDefinition("NAME");

$nameProperty->SetDataType(MgPropertyType::String);

// Add the name property to the class definition

$classDefinition->GetProperties()->Add($nameProperty);

  

// Create a geometry property

$geometryProperty = new

    MgGeometricPropertyDefinition($geometryPropertyName);

$geometryProperty->

    SetGeometryTypes(MgFeatureGeometricType::Surface);

// Add the geometry property to the class definition

$classDefinition->GetProperties()->Add($geometryProperty);

  

// Create a feature schema

$featureSchema = new MgFeatureSchema("SHP_Schema",

    "Line schema");

// Add the feature schema to the class definition

$featureSchema->GetClasses()->Add($classDefinition);

  

// Create the feature source

$wkt = $map->GetMapSRS();
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$sdfParams = new MgCreateSdfParams("spatial context",

$wkt, $featureSchema);

$featureService->CreateFeatureSource($resourceIdentifier,

$sdfParams);

Creating A Layer

The final step is to create a new layer to display the feature source, the same
way it was done in Adding Layers To A Map (page 71).
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Custom Output

In this chapter

■ Introduction

■ Rendering Service

■ Mapping Service

8
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Introduction

TIP The Custom Output sample, in the Developer’s Guide samples, demonstrates
concepts from this chapter.

MapGuide includes services for saving map representations for use in external
programs.

To save a map as a bit-mapped image (PNG or GIF), use the Rendering Service.

To save a map as a Design Web Format (DWF), use the Mapping Service. DWF
files can be saved in two variations. An eMap DWF contains metadata that
describes the current map view, not the map data itself. This is a compact
format, but it requires access to the map agent to view the map. It is not
suitable for offline viewing, and it requires a current MapGuide session.

An ePlot DWF is designed for offline viewing or printing. It can contain
multiple sheets, where each sheet is a complete map image that can be viewed
offline using Autodesk Design Review. Each sheet in an ePlot DWF is a static
representation of a single map view state.

Characteristics of bit-mapped images:

■ Images can be in PNG or GIF formats.

■ An image displays a portion of the the map view state at a particular scale.

■ The image is static with a fixed resolution. Zooming in creates a pixelated
image.

■ Images are cross-platform.

■ Images are suitable for use in HTML pages, word processor documents, or
graphics editing programs.

Characteristics of an ePlot DWF:

■ A single ePlot can contain multiple sheets.

■ Each sheet shows a single image, showing a portion of the map view at a
particular scale.

■ The ePlot area and scale are static, but geometric features are stored as
vector graphics, so zooming is smooth.

■ Some interactive features of the MapGuide DWF Viewer are available, such
as the ability to turn layers on and off.
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■ The ePlot requires the Autodesk Design Review, either standalone or as a
plug-in for Internet Explorer.

■ Images can be copied to the Windows clipboard and used in other
applications.

■ Autodesk Design Review is a free program that is only available on
Windows. Visit http://www.autodesk.com to download.

Characteristics of an eMap DWF:

■ An eMap DWF is dynamic, with all the zooming and panning capabilities
of the MapGuide DWF Viewer.

■ Because the eMap Viewer uses the map agent, the entire map is available
for smooth zooming and panning. The layer stylization rules apply.

■ The eMap requires the Autodesk Design Review, either standalone or as a
plug-in for Internet Explorer.

■ The eMap requires an active MapGuide session. If the session times out
the map cannot be displayed.

■ Individual views from an eMap DWF can be saved as ePlot DWFs.

■ Autodesk Design Review is a free program that is only available on
Windows.

Rendering Service
The Rendering Service creates bit-mapped images of a map suitable for
displaying in a browser or saving to a file. The image is returned as an
MgByteReader object, which can be sent to a browser or saved to a file.

For example, to create a PNG image of a map area, perform the following
operations. Note that the aspect ratio of the envelope should match the image
dimensions or the image will be distorted.
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$byteReader = $renderingService->RenderMap($map, $selection,

  $envelope, $imageWidth, $imageHeight, $color, 'PNG');

 

header("Content-type: " . $byteReader->GetMimeType() );

 

$buffer = '';

while ($byteReader->Read($buffer, 50000) != 0)

{

echo $buffer;

}

Mapping Service
The Mapping Service creates eMap and ePlot DWFs.

Generating an eMap DWF requires the DWF version and the URI of the map
agent. Note that the HTTP header must include content length information,
as in the following example.

$dwfVersion = new MgDwfVersion("6.01", "1.2");

$mapAgentUri =

'http://localhost:8008/mapguide/mapagent/mapagent.exe';

$byteReader = $mappingService->GenerateMap($map, $mapAgentUri,

$dwfVersion);

$outputBuffer = '';

$buffer = '';

while ($byteReader->Read($buffer, 50000) != 0)

{

$outputBuffer .= $buffer;

}

header('Content-Type: ' . $byteReader->GetMimeType());

header('Content-Length: ' . strlen($outputBuffer));

echo $outputBuffer;

An ePlot DWF is designed primarily for offline viewing or printing. It includes
an MgPlotSpecification that defines the page size and margins. It can also
include an optional MgLayout that defines additional components to include
in the plot, like a legend or a custom logo. The layout is based on a print
layout in the repository. For a description of the PrintLayout schema, see the
MapGuide Web API Reference.

104 | Chapter 8   Custom Output



To create an ePlot DWF with more than one sheet, use an
MgMapPlotCollection, where each item in the collection is an MgMapPlot that
describes a single sheet.

NOTE The map name becomes the sheet name in the multi-plot DWF. Because
each sheet in the DWF must have a unique name, you must create a separate
MgMap object for each sheet in the DWF.

The following example creates a multi-plot DWF with two sheets. The second
sheet displays the same map area as the first, but it adds the title and legend
information from the print layout.
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$dwfVersion = new MgDwfVersion("6.01", "1.2");

 

$plotSpec = new MgPlotSpecification(8.5, 11,

  MgPageUnitsType::Inches);

$plotSpec->SetMargins(0.5, 0.5, 0.5, 0.5);

 

$plotCollection = new MgMapPlotCollection();

 

$plot1 = new MgMapPlot($map, $plotSpec, $layout);

$plotCollection->Add($plot1);

 

// Create a second map for the second sheet in the DWF. This

// second map uses the print layout

// to display a page title and legend.

 

$map2 = new MgMap();

$map2->Create($resourceService, $map->GetMapDefinition(),

  'Sheet 2');

$layoutRes = new MgResourceIdentifier(

  "Library://Samples/Sheboygan/Layouts/SheboyganMap.PrintLayout");

$layout = new MgLayout($layoutRes, "City of Sheboygan",

  MgPageUnitsType::Inches);

$plot2 = new MgMapPlot($map2,

  $map->GetViewCenter()->GetCoordinate(), $map->GetViewScale(),

  $plotSpec, $layout);

$plotCollection->Add($plot2);

 

$byteReader = $mappingService->

  GenerateMultiPlot($plotCollection, $dwfVersion);

 

// Now output the resulting DWF.

 

$outputBuffer = '';

$buffer = '';

while ($byteReader->Read($buffer, 50000) != 0)

{

$outputBuffer .= $buffer;

}

header('Content-Type: ' . $byteReader->GetMimeType());

header('Content-Length: ' . strlen($outputBuffer));

echo $outputBuffer;
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