TR |- "B

e @60 | Berkeley B2
web view cm per plxe O Layers
:__I ; . - | Info Pernlalinlu AL “‘ﬂ kY Images EG 2 vu
= § . a1 Base Layer [=]
- Py e L ! : " , .tiget-base-g-WMS BISZ
National Agricultural A L 7Y ® openstrestuap
&= . Ve | NAIP 2014 Berkeley I SEG < Clib v
Imagery Program 2016 e A < B Quaip 014 erkeley Image ibrary 0
L | ® e 2016 1R A segmentation kernel with N1
Overlays library routines which take i IS

vid

e u

}
JoeJIX9 Sbulp|ing 40}
|leuy abew] paseg-129lg

PI1U.I0
Uo]

SISA

Brian M Hamlin
Steve Woodbridge
California OpenData ECN
+1 510 225 1702
ECN@light42.com

BT raster GeoTIFF or GDAL VRT

¥ County

¥ County Subs and produce polygons with

8 cities statistics, called segments.
.areas from lines
.Trainin
... J parameters
:::;::::‘"95 t threshhold
§ ot wanee s shape count ¢ IBs
.Release Buildings C CompaCtneSS
O — T
NAIP quad oqa is processed into
layer - multiple products for analysis BIS2 Segmentation Kernel
mode  description Output Examples |
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b.2) vary only (t) to a higher
value; notice the same polygon
boundaries return in addition to
new interior polygons.
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Imagery Segmented, Classified and Predicted as 2D Polygons; Arcata, California

NAIP imagery in a search area is segmented. Classification is performed via Scikit-Learn GBT.

A Gradient-Boost Tree (GBT) model is saved in the training phase, and applied to new areas.

Defined classes are: 0 not a building; 2 commercial building of interest; 1 other building

Each polygon gets three attributes [0 - 1.0] as the probability of class identity e.g. htarg2_predict_cO.
Zero means not at all likely, 1.0 means certainty; in practice, the three together equal 1.0.
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Segmented Imagery Polygons over Trammg lerary 2D Pongons, urban Inglewood, California

NAIP imagey is processed via BIS2 library emitting polygon geometry plus statistics per polygon.
Unique ID (pkey) for both segment polygons and training polygons are labeled.

NAIP Raster Inputs are Split into Layers
e synthetic layers are then produced and stored
Openlayers web defines machine-addressable layer navigation via URL

BIS2 Kernel Produces Segmentation Polygons
segments vary substantially by parameter, so try many variations
Use efficient methods to search & sort the segment results; pick a winner

Create a Library of Search Targets
use authoritative 2D polygons plus attributes for buildings of interest
match building type classifications in a ‘crosswalk’

Scikit-Learn Engine to Train, then Search
segments over search targets are scored into defined classes
Apply segmentation to a new search area; match with training model; show results

ML Training Library

Supervised Learning with 0BIA

Unsupervised machine learning with pixel-based analysis was not chosen as
the methodology for this project. Instead, a newer methodology was chosen,
supervised classification with Object-Based Image Analysis (OBIA).

In a supervised classification system with OBIA, representative samples for
each class of interest are selected as polygons with attributes, and supplied
as inputs to create a training set. In search, Scikit-Learn uses its saved
training set to compare new segmented polygons derived from search imag-
ery, and emits a scored likelyhood of class membership for each polygon.

Building the Training Library

1) hand-pick several dozen buildings of interest along with convenient
attributes, including a 2D polygon footprint and street address.

2) gather similar records from a very large authoritative set.

3) execute and store Five Tests on the intersection of segmented imagery,
and all buildings in the training area, and buildings occurring in the training
set. The five attributes are stored for every segment in a table, named in
such a way as the segementation parameters are visible in the table name.

relevance table ( schema.table_name ) :

relevance.inglewood run2 5b 50 03 03

gid integer PRIMARY KEY,
class integer,
pctoverlap double precision,
coveragel double precision,
coverage?2 double precision,
centr seg boolean,
centr trg boolean

Training Library
Development

Unique 2D Polygon

Training Set Text File
#/osmb (zoom level)
BldgTypelID, BldgTypeName,
Rooftype, Context, Desc

#14. Hawthorne Elementary School
/osmb/?zoom=186&
lat=40.80213&lon=-124.16604¢&
layers=00000BOTTFFFFF
47 Non-Urban Elementary School
White corrugated metal
Asphalt playgrounds & parking lots,
fields, suburban cul-de-sac neighborhood,
citrus orchards
Riverside, CA

Building Types Crosswalk

13,Commercial ,Department Stores,39,,1
14 ,Commercial ,Supermarkets,41,,1

16 ,Commercial,Shopping Centers (Regional),h39,,1
17 ,Commercial ,Office Buildings,32,,1

sd data.train bldgs 08marl7

gid | integer

building_type_id | integer

bulldlng type name | text

situscity | text

shp _area m | integer

geom | geometry (MultiPolygon,4326)




