
State of GDAL
GDAL 3.8 & 3.9

Even Rouault
SPATIALYS

July 3rd 2024

GDAL/OGR : Introduction

● GDAL? Geospatial Data Abstraction Library. The swiss army
knife for geospatial.

● Read and write Raster (GDAL) and Vector (OGR) datasets
● 250 (mainly) geospatial formats and protocols.
● Widely used

(> 100 http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal)

● MIT Open Source license (permissive)

http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal

OGC Features and Geometries JSON (JSON-FG)

● In-development spec extending GeoJSON:
- use CRS other than WGS84 (“coordRefSys”)
⇒ “place” element in addition to “geometry”
- support for solids and prisms as geometry
types (probably curves in final version)
- encoding of temporal characteristics of a
feature (“time”)
- ability to declare the type (“featureType”) and
the schema of a feature (“featureSchema”).

Spec at https://github.com/opengeospatial/ogc-feat-geo-json

https://github.com/opengeospatial/ogc-feat-geo-json

OGC Features and Geometries JSON (JSON-FG)

{
 "type": "FeatureCollection",
 "conformsTo" : ["[ogc-json-fg-1-0.3:core]"],
 "coordRefSys": "[EPSG:32631]",
 "features": [{
 "type": "Feature",
 "id": 1,
 "featureType": "MyFeatureType",
 "featureSchema": "https://example.com/collections/MyFeatureType/schema",
 "geometry": { "type": "Point", "coordinates": [2, 49] },
 "place": { "type": "Point", "coordinates": [426857.988, 5427937.523] },
 "properties": { "foo": 1 },
 "time": {"timestamp": "2023-06-05T12:34:56Z"}
 }]
}

OGC Features and Geometries JSON (JSON-FG)

● JSONFG driver shares similar behavior as GeoJSON
one when applicable

● On writing, the driver handles filling both the “place”
geometry with the native CRS, and automatic filling of
“geometry” reprojected to WGS 84

● Multiple layers can be read and written, using the
“featureType” special attribute

● Mapping between the “time” element and OGR feature
properties

● Minimum read support for Polyhedron geometries (with
a single outer shell) and Prism with Point, LineString or
Polygon base

● Driver doc at https://gdal.org/drivers/vector/jsonfg.html

https://gdal.org/drivers/vector/jsonfg.html

OGC Features and Geometries JSON (JSON-FG)

$ ogrinfo test.json -al
INFO: Open of `test.json' using driver `JSONFG' successful.

Layer name: MyFeatureType
Geometry: Point
Feature Count: 1
Extent: (426857.988000, 5427937.523000) - (426857.988000, 5427937.523000)
Layer SRS WKT: PROJCRS["WGS 84 / UTM zone 31N",[...],ID["EPSG",32631]]
Data axis to CRS axis mapping: 1,2
time: DateTime
foo: Integer (0.0)
OGRFeature(MyFeatureType):1
 time (DateTime) = 2023/06/05 12:34:56+00
 foo (Integer) = 1
 POINT (426857.988 5427937.523)

PMTiles (ProtoMap Tiles) v3

● Cloud-friendy tile container that enables to serve tiles
efficiently with only object storage functionality

● Same spirit as COG or FlatGeoBuf
● Similar content as MBTiles, but with a highly optimized

index / directory
● https://www.youtube.com/watch?v=zpQMLLDAowM :

“Serverless Planet-scale Geospatial with Protomaps and
PMTiles” - Brandon Liu - FOSS4G 2023 Prizren

● OGR driver has read/write support for vector tiles in MVT
(Mapbox Vector Tiles) format

● Same options as existing MBTiles and MVT drivers
● /vsipmtiles/ virtual file system
● Doc: https://gdal.org/drivers/vector/pmtiles.html

https://www.youtube.com/watch?v=zpQMLLDAowM
https://gdal.org/drivers/vector/pmtiles.html

Bathymetric related raster drivers: S-102, S-104,
S-111

● IHO (International Hydrography Organization)
standards

● Based on S-100 abstract specification
● HDF5 based containers
● Read-only drivers
● S-102: Bathymetric Surface Product (similar to existing

BAG - Bathymetry Attributed Grid): depth and
uncertainty

● S-104: Water Level Information for Surface Navigation
Product: water level height and trend, multiple
timestamps

● S-111: Surface Currents Product: current speed and
direction, multiple timestamps

gdal_footprint command line utility

● Compute polygonal envelope of a raster
● Take into account nodata/alpha band
● ~= gdal_polygonize with specific options
● Decide how to combine validity of bands
● Can work on overviews for speed-up
● Several geometry processing options:

■ Reproject to another CRS
■ Densify or simplify (minimum distance of

maximum number of points) polygons
■ Split multipolygons
■ Remove too small areas

● GDALFootprint() in C, gdal.Footprint() in Python

GDAL raster Tile Index (GTI) driver: virtual
mosaics

● Improved version of VRT (Virtual RasTer)
● Handle very large collections of tiles (100K+)
● Any OGR vector driver can be a backend, but

more efficient with GeoPackage, FlatGeoBuf,
PostGIS

● Advantages over VRT:
○ Efficient on opening and pixel extraction even with very

large collections
○ Smaller indices files
○ Use of spatial indices
○ On-the-fly reprojection
○ Z-order control (dedicated field)
○ Use of alpha band for overlapping sources

GDAL Raster Tile Index (GTI) driver: virtual
mosaics

● Can be generated with gdaltindex, or
programmatically

● A GTI tile index requires:
○ A vector layer with a column with the dataset

location and its polygonal footprint
○ Global metadata describing:

■ Resolution
■ Extent
■ CRS
■ Data type
■ Number of bands
■ …

GDAL Raster Tile Index (GTI) driver: virtual
mosaics

● Metadata can be embedded in formats allowing it
(GeoPackage, FlatGeoBuf, PostGIS), or provided in a
dedicated small XML file

● gdaltindex -gti_filename index.xml -lyr_name index
 -t_srs EPSG:26711 -tr 60 60 index.gti.fgb $PWD/*.tif
⇒ Index.xml:
<GDALTileIndexDataset>
 <IndexDataset>index.gti.fgb</IndexDataset>
 <IndexLayer>index</IndexLayer>
 <LocationField>location</LocationField>
 <ResX>60</ResX>
 <ResY>60</ResY>
</GDALTileIndexDataset>

● All details at https://gdal.org/drivers/raster/gti.html

https://gdal.org/drivers/raster/gti.html

Arrow interface: quick recap

● GDAL 3.6 introduced a Arrow-based columnar
oriented read API for vector features

Enhancements in Arrow interface (GDAL 3.8)

● Parquet driver: enhancements in attribute and
spatial filtering handling on the read side

● Arrow compatible interface available on the
write side with a OGRLayer::WriteArrowBatch()
○ Generic implementation for all drivers
○ Specialized implementation in Arrow and Parquet

drivers
○ Ogr2ogr uses in simple translation cases Arrow read

& write capabilities for faster execution, when source
dataset has an optimized Arrow read interface
■ GeoPackage -> Parquet: 3x faster
■ Parquet -> Parquet: 10x faster

Enhancements in (Geo)Parquet driver

● Support/reading nested list/map datatypes as
JSON

● Implement full spatial filtering (not just bbox
intersection

● GeoParquet 1.1 features (GDAL 3.9):
○ Bounding box columns per feature for fast

spatial filtering (using Parquet statistics)
○ On creation, option to sort features spatially

for more efficient grouping
○ Alternate GeoArrow encoding

Enhanced support for geometry coordinate
precision (GDAL 3.9, RFC 99)

● Unified framework to specify geometry coordinate
precision:
https://gdal.org/development/rfc/rfc99_geometry_coordinate_precision.html

● Formats enhanced to store coordinate precision:
GeoJSON, JSON-FG, GML, CSV, GeoPackage

● GeoPackage can perform optional binary coordinate
precision, to combine with lossless compression (ZIP)

● ogrinfo (in JSON output) reports coordinate precision if
known

● Ogr2ogr: specify precision or propagate source
coordinate precision

https://gdal.org/development/rfc/rfc99_geometry_coordinate_precision.html

GDAL driver plugin related enhancements

● Drivers that depend on external libraries (in particular
proprietary SDKs) can be built as separate, run-time
loadable libraries

● Used for example by the Alpine Linux official GDAL
package or conda-forge GDAL build for Parquet driver

● Enhancement in GDAL 3.9 to only load those plugin
drivers when strictly needed

● Speed enhancement, especially for short lived
process

● Details at
https://gdal.org/development/rfc/rfc96_deferred_plugin_loading.html

https://gdal.org/development/rfc/rfc96_deferred_plugin_loading.html

Miscellaneous

● New driver for vector Miramon format

● TileDB: read/write support for multidimensional API
● Performance improvements in GeoPackage:

spatial index creation ⇒ 3 to 4 times faster
● Line of sight algorithm (C / Python API)
● Update of build requirements for GDAL >= 3.9 to C++17

and third-party libraries as available in Ubuntu >= 20.04
(GDAL C++ API still only requiring C++11)
Cf https://gdal.org/development/rfc/rfc98_build_requirements_gdal_3_9.html

● Use of a C++ command line argument parsing framework
(argparse) (in-progress GDAL 3.9 / GDAL 3.10)

https://gdal.org/development/rfc/rfc98_build_requirements_gdal_3_9.html

Miscellaneous

● gdaladdo enhancements to partially refresh existing
overviews:
○ --partial-refresh-from-source-timestamp
○ --partial-refresh-from-projwin <ulx> <uly> <lrx> <lry>
○ --partial-refresh-from-source-extent <filename1,...,filenameN>

● Multiple enhancements to vrt:// connection string,
covering most options of gdal_translate

E.g. “vrt://my.tif?srcwin=2,50,3,49”
● Various improvements in Python bindings to reduce

long-standing “gotchas” related to cross-object
references.

GDAL 3.10 preview

● GeoParquet: attribute and spatial filter push
down for multi-file datasets

● TileDB: support for nodata and overviews
● Performance improvements in gdal_viewshed

(multi-threading)
● Partial support for 64-bit ObjectIDs in

OpenFileGDB driver
● XODR: new vector driver to read road networks

in OpenDrive format
● Probable support for Float16/Half-Float data

type in Zarr format

Thanks to GDAL sponsors! (gdal.org/sponsors)

Questions?

Links:
 http://gdal.org/

Contact: even.rouault@spatialys.com

http://www.gdal.org/
mailto:even.rouault@spatialys.com

